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ABSTRACT

Musical performance combines a wide range of pitches,
nuances, and expressive techniques. Audio-based classifi-
cation of musical instruments thus requires to build signal
representations that are invariant to such transformations.
This article investigates the construction of learned con-
volutional architectures for instrument recognition, given
a limited amount of annotated training data. In this con-
text, we benchmark three different weight sharing strate-
gies for deep convolutional networks in the time-frequency
domain: temporal kernels; time-frequency kernels; and a
linear combination of time-frequency kernels which are
one octave apart, akin to a Shepard pitch spiral. We pro-
vide an acoustical interpretation of these strategies within
the source-filter framework of quasi-harmonic sounds with
a fixed spectral envelope, which are archetypal of musical
notes. The best classification accuracy is obtained by hy-
bridizing all three convolutional layers into a single deep
learning architecture.

1. INTRODUCTION

Among the cognitive attributes of musical tones, pitch is
distinguished by a combination of three properties. First,
it is relative: ordering pitches from low to high gives rise
to intervals and melodic patterns. Secondly, it is intensive:
multiple pitches heard simultaneously produce a chord, not
a single unified tone – contrary to loudness, which adds up
with the number of sources. Thirdly, it does not depend
on instrumentation: this makes possible the transcription
of polyphonic music under a single symbolic system [5].

Tuning auditory filters to a perceptual scale of pitches
provides a time-frequency representation of music signals
that satisfies the first two of these properties. It is thus a
starting point for a wide range of MIR applications, which
can be separated in two categories: pitch-relative (e.g.
chord estimation [13]) and pitch-invariant (e.g. instrument
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recognition [9]). Both aim at disentangling pitch from tim-
bral content as independent factors of variability, a goal
that is made possible by the third aforementioned property.
This is pursued by extracting mid-level features on top of
the spectrogram, be them engineered or learned from train-
ing data. Both approaches have their limitations: a ”bag-
of-features” lacks flexibility to represent fine-grain class
boundaries, whereas a purely learned pipeline often leads
to uninterpretable overfitting, especially in MIR where the
quantity of thoroughly annotated data is relatively small.

In this article, we strive to integrate domain-specific
knowledge about musical pitch into a deep learning frame-
work, in an effort towards bridging the gap between feature
engineering and feature learning.

Section 2 reviews the related work on feature learning
for signal-based music classification. Section 3 demon-
strates that pitch is the major factor of variability among
musical notes of a given instrument, if described by
their mel-frequency cepstra. Section 4 presents a typical
deep learning architecture for spectrogram-based classifi-
cation, consisting of two convolutional layers in the time-
frequency domain and one densely connected layer. Sec-
tion 5 introduces alternative convolutional architectures for
learning mid-level features, along time and along a Shep-
ard pitch spiral, as well as aggregation of multiple models
in the deepest layers. Sections 6 discusses the effective-
ness of the presented systems on a challenging dataset for
music instrument recognition.

2. RELATED WORK

Spurred by the growth of annotated datasets and the democ-
ratization of high-performance computing, feature learning
has enjoyed a renewed interest in recent years within the
MIR community, both in supervised and unsupervised set-
tings. Whereas unsupervised learning (e.g. k-means [25],
Gaussian mixtures [14]) is employed to fit the distribution
of the data with few parameters of relatively low abstrac-
tion and high dimensionality, state-of-the-art supervised
learning consists of a deep composition of multiple non-
linear transformations, jointly optimized to predict class
labels, and whose behaviour tend to gain in abstraction as
depth increases [27].

As compared to other deep learning techniques for au-
dio processing, convolutional networks happen to strike
the balance between learning capacity and robustness. The
convolutional structure of learned transformations is de-
rived from the assumption that the input signal, be it a one-

612



dimensional waveform or a two-dimensional spectrogram,
is stationary — which means that content is independent
from location. Moreover, the most informative dependen-
cies between signal coefficients are assumed to be concen-
trated to temporal or spectrotemporal neighborhoods. Un-
der such hypotheses, linear transformations can be learned
efficiently by limiting their support to a small kernel which
is convolved over the whole input. This method, known
as weight sharing, decreases the number of parameters of
each feature map while increasing the amount of data on
which kernels are trained.

By design, convolutional networks seem well adapted
to instrument recognition, as this task does not require a
precise timing of the activation function, and is thus essen-
tially a challenge of temporal integration [9, 14]. Further-
more, it benefits from an unequivocal ground truth, and
may be simplified to a single-label classification problem
by extracting individual stems from a multitrack dataset [2].
As such, it is often used a test bed for the development of
new algorithms [17, 18], as well as in computational stud-
ies in music cognition [20, 21].

Some other applications of deep convolutional networks
include onset detection [23], transcription [24], chord
recognition [13], genre classification [3], downbeat track-
ing [8], boundary detection [26], and recommendation
[27].

Interestingly, many research teams in MIR have con-
verged to employ the same architecture, consisting of two
convolutional layers and two densely connected layers
[7,13,15,17,18,23,26], and this article makes no exception.
However, there is no clear consensus regarding the weight
sharing strategies that should be applied to musical audio
streams: convolutions in time or in time-frequency coex-
ist in the recent literature. A promising paradigm [6, 8],
at the interaction between feature engineering and feature
learning, is to extract temporal or spectrotemporal descrip-
tors of various low-level modalities, train specific convolu-
tional layers on each modality to learn mid-level features,
and hybridize information at the top level. Recognizing
that this idea has been successfully applied to large-scale
artist recognition [6] as well as downbeat tracking [8], we
aim to proceed in a comparable way for instrument recog-
nition.

3. HOW INVARIANT IS THE MEL-FREQUENCY
CEPSTRUM ?

The mel scale is a quasi-logarithmic function of acoustic
frequency designed such that perceptually similar pitch in-
tervals appear equal in width over the full hearing range.
This section shows that engineering transposition-invariant
features from the mel scale does not suffice to build pitch
invariants for complex sounds, thus motivating further in-
quiry.

The time-frequency domain produced by a constant-Q
filter bank tuned to the mel scale is covariant with respect
to pitch transposition of pure tones. As a result, a chro-
matic scale played at constant speed would draw parallel,
diagonal lines, each of them corresponding to a different

Figure 1: Constant-Q spectrogram of a chromatic scale
played by a tuba. Although the harmonic partials shift pro-
gressively, the spectral envelope remains unchanged, as re-
vealed by the presence of a fixed cutoff frequency. See text
for details.

partial wave. However, the physics of musical instruments
constrain these partial waves to bear a negligible energy
if their frequencies are beyond the range of acoustic reso-
nance.

As shown on Figure 1, the constant-Q spectrogram of
a tuba chromatic scale exhibits a fixed, cutoff frequency
at about 2.5 kHz, which delineates the support of its spec-
tral envelope. This elementary observation implies that re-
alistic pitch changes cannot be modeled by translating a
rigid spectral template along the log-frequency axis. The
same property is verified for a wide class of instruments,
especially brass and woodwinds. As a consequence, the
construction of powerful invariants to musical pitch is not
amenable to delocalized operations on the mel-frequency
spectrum, such as a discrete cosine transform (DCT) which
leads to the mel-frequency cepstral coefficients (MFCC),
often used in audio classification [9, 14].

To validate the above claim, we have extracted the
MFCC of 1116 individual notes from the RWC dataset
[10], as played by 6 instruments, with 32 pitches, 3 nu-
ances, and 2 interprets and manufacturers. When more
than 32 pitches were available (e.g. piano), we selected
a contiguous subset of 32 pitches in the middle register.
Following a well-established rule [9, 14], the MFCC were
defined the 12 lowest nonzero ”quefrencies” among the
DCT coefficients extracted from a filter bank of 40 mel-
frequency bands. We then have computed the distribution
of squared Euclidean distances between musical notes in
the 12-dimensional space of MFCC features.

Figure 2 summarizes our results. We found that restrict-
ing the cluster to one nuance, one interpret, or one manu-
facturer hardly reduces intra-class distances. This suggests
that MFCC are fairly successful in building invariant rep-
resentations to such factors of variability. In contrast, the
cluster corresponding to each instrument is shrinked if de-
composed into a mixture of same-pitch clusters, sometimes
by an order of magnitude. In other words, most of the vari-
ance in an instrument cluster of mel-frequency cepstra is
due to pitch transposition.

Keeping less than 12 coefficients certainly improves
invariance, yet at the cost of inter-class discriminability,
and vice versa. This experiment shows that the mel-
frequency cepstrum is perfectible in terms of invariance-
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Figure 2: Distributions of squared Euclidean distances
among various MFCC clusters in the RWC dataset.
Whisker ends denote lower and upper deciles. See text for
details.

discriminability tradeoff, and that there remains a lot to be
gained by feature learning in this area.

4. DEEP CONVOLUTIONAL NETWORKS

A deep learning system for classification is built by stack-
ing multiple layers of weakly nonlinear transformations,
whose parameters are optimized such that the top-level
layer fits a training set of labeled examples. This section
introduces a typical deep learning architecture for audio
classification and describes the functioning of each layer.

Each layer in a convolutional network typically consists
in the composition of three operations: two-dimensional
convolutions, application of a pointwise nonlinearity, and
local pooling. The deep feed-forward network made of
two convolutional layers and two densely connected lay-
ers, on which our experiment are conducted, has become
a de facto standard in the MIR community [7, 13, 15,
17, 18, 23, 26]. This ubiquity in the literature suggests
that a four-layer network with two convolutional layers is
well adapted to supervised audio classification problems of
moderate size.

The input of our system is a constant-Q spectrogram,
which is very comparable to a mel-frequency spectrogram.
We used the implementation from the librosa package [19]
with Q = 12 filters per octave, center frequencies ranging
from A1 (55Hz) to A9 (14 kHz), and a hop size of 23ms.
Furthermore, we applied nonlinear perceptual weighting of
loudness in order to reduce the dynamic range between the
fundamental partial and its upper harmonics. A 3-second
sound excerpt x[t] is represented by a time-frequency ma-

trix x1[t, k1] of width T = 128 samples and height K1 =
96 frequency bands.

A convolutional operator is defined as a family
W2[τ, κ1, k2] of K2 two-dimensional filters, whose im-
pulse repsonses are all constrained to have width ∆t and
height ∆k1. Element-wise biases b2[k2] are added to the
convolutions, resulting in the three-way tensor

y2[t, k1, k2]

= b2[k2] +W2[t, k1, k2]
t,k1∗ x1[t, k1]

= b2[k2] +
∑

0≤τ<∆t
0≤κ1<∆k1

W2[τ, κ1, k2]x1[t− τ, k1 − κ1]. (1)

The pointwise nonlinearity we have chosen is the rectified
linear unit (ReLU), with a rectifying slope of α = 0.3 for
negative inputs.

y+
2 [t, k1, k2] =

{
αy2[t, k1, k2] if y2[t, k1, k2] < 0
y2[t, k1, k2] if y2[t, k1, k2] ≥ 0

(2)

The pooling step consists in retaining the maximal acti-
vation among neighboring units in the time-frequency do-
main (t, k1) over non-overlapping rectangles of width ∆t
and height ∆k1.

x2[t, k1, k2] = max
0≤τ<∆t

0≤κ1<∆k1

{
y+
2 [t− τ, k1 − κ1, k2]

}
(3)

The hidden units in x2 are in turn fed to a second layer of
convolutions, ReLU, and pooling. Observe that the cor-
responding convolutional operator W3[τ, κ1, k2, k3] per-
forms a linear combination of time-frequency feature maps
in x2 along the variable k2.

y3[t, k1, k3]

=
∑
k2

b3[k2, k3] +W3[t, k1, k2, k3]
t,k1∗ x2[t, k1, k2]. (4)

Tensors y+
3 and x3 are derived from y3 by ReLU and pool-

ing, with formulae similar to Eqs. (2) and (3). The third
layer consists of the linear projection of x3, viewed as a
vector of the flattened index (t, k1, k3), over K4 units:

y4[k4] = b4[k4] +
∑

t,k1,k3

W4[t, k1, k3, k4]x3[t, k1, k3] (5)

We apply a ReLU to y4, yielding x4[k4] = y+
4 [k4]. Fi-

nally, we project x4, onto a layer of output units y5 that
should represent instrument activations:

y5[k5] =
∑
k4

W5[k4, k5]x4[k4]. (6)

The final transformation is a softmax nonlinearity, which
ensures that output coefficients are non-negative and sum
to one, hence can be fit to a probability distribution:

x5[k5] =
expy5[k5]∑
κ5

expy5[κ5]
. (7)

Given a training set of spectrogram-instrument pairs
(x1, k), all weigths in the network are iteratively updated
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Figure 3: A two-dimensional deep convolutional network trained on constant-Q spectrograms. See text for details.

to minimize the stochastic cross-entropy loss L (x5, k) =
− logx5[k] over shuffled mini-batches of size 32 with uni-
form class distribution. The pairs (x1, k) are extracted on
the fly by selecting non-silent regions at random within
a dataset of single-instrument audio recordings. Each 3-
second spectrogram x1[t, k1] within a batch is globally nor-
malized such that the whole batch had zero mean and unit
variance. At training time, a random dropout of 50% is
applied to the activations of x3 and x4. The learning rate
policy for each scalar weight in the network is Adam [16],
a state-of-the-art online optimizer for gradient-based learn-
ing. Mini-batch training is stopped after the average train-
ing loss stopped decreasing over one full epoch of size
8192. The architecture is built using the Keras library [4]
and trained on a graphics processing unit within minutes.

5. IMPROVED WEIGHT SHARING STRATEGIES

Although a dataset of music signals is unquestionably sta-
tionary over the time dimension – at least at the scale of
a few seconds – it cannot be taken for granted that all fre-
quency bands of a constant-Q spectrogram would have the
same local statistics [12]. In this section, we introduce two
alternative architectures to address the nonstationarity of
music on the log-frequency axis, while still leveraging the
efficiency of convolutional representations.

Many are the objections to the stationarity assumption
among local neighborhoods in mel frequency. Notably
enough, one of the most compelling is derived from the
classical source-filter model of sound production. The fil-
ter, which carries the overall spectral envelope, is affected
by intensity and playing style, but not by pitch. Conversely,
the source, which consists of a pseudo-periodic wave, is
transposed in frequency under the action of pitch. In order
to extract the discriminative information present in both
terms, it is first necessary to disentangle the contributions
of source and filter in the constant-Q spectrogram. Yet,
this can only be achieved by exploiting long-range correla-
tions in frequency, such as harmonic and formantic struc-
tures. Besides, the harmonic comb created by the Fourier
series of the source makes an irregular pattern on the log-
frequency axis which is hard to characterize by local statis-
tics.

5.1 One-dimensional convolutions at high frequencies

Facing nonstationary constant-Q spectra, the most conser-
vative workaround is to increase the height ∆κ1 of each
convolutional kernel up to the total number of bins K1 in
the spectrogram. As a result, W1 and W2 are no longer
transposed over adjacent frequency bands, since convolu-
tions are merely performed over the time variable. The
definition of y2[t, k1, k2] rewrites as

y2[t, k1, k2]

= b2[k2] +W2[t, k1, k2]
t∗ x1[t, k1]

= b2[k2] +
∑

0≤τ<∆t

W2[τ, k1, k2]x1[t− τ, k1], (8)

and similarly for y3[t, k1, k3]. While this approach is the-
oretically capable of encoding pitch invariants, it is prone
to early specialization of low-level features, thus not fully
taking advantage of the network depth.

However, the situation is improved if the feature maps
are restricted to the highest frequencies in the constant-Q
spectrum. It should be observed that, around the nth partial
of a quasi-harmonic sound, the distance in log-frequency
between neighboring partials decays like 1/n, and the un-
evenness between those distances decays like 1/n2. Con-
sequently, at the topmost octaves of the constant-Q spec-
trum, where n is equal or greater than Q, the partials appear
close to each other and almost evenly spaced. Furthermore,
due to the logarithmic compression of loudness, the poly-
nomial decay of the spectral envelope is linearized: thus,
at high frequencies, transposed pitches have similar spec-
tra up to some additive bias. The combination of these two
phenomena implies that the correlation between constant-
Q spectra of different pitches is greater towards high fre-
quencies, and that the learning of polyvalent feature maps
becomes tractable.

In our experiments, the one-dimensional convolutions
over the time variable range from A6 (1.76 kHz) to A9

(14 kHz).

5.2 Convolutions on the pitch spiral at low frequencies

The weight sharing strategy presented above exploits the
facts that, at high frequencies, quasi-harmonic partials are
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numerous, and that the amount of energy within a fre-
quency band is independent of pitch. At low frequencies,
we make the exact opposite assumptions: we claim that
the harmonic comb is sparse and covariant with respect to
pitch shift. Observe that, for any two distinct partials taken
at random between 1 and n, the probability that they are in
octave relation is slightly above 1/n. Thus, for n relatively
low, the structure of harmonic sounds is well described by
merely measuring correlations between partials one octave
apart. This idea consists in rolling up the log-frequency
axis into a Shepard pitch spiral, such that octave intervals
correspond to full turns, hence aligning all coefficients of
the form x1[t, k1 + Q × j1] for j1 ∈ Z onto the same ra-
dius of the spiral. Therefore, correlations between power-
of-two harmonics are revealed by the octave variable j1.

To implement a convolutional network on the pitch spi-
ral, we crop the constant-Q spectrogram in log-frequency
into J1 = 3 half-overlapping bands whose height equals
2Q, that is two octaves. Each feature map in the first layer,
indexed by k2, results from the sum of convolutions be-
tween a time-frequency kernel and a band, thus emulating
a linear combination in the pitch spiral with a 3-d tensor
W2[τ, κ1, j1, k2] at fixed k2. The definition of y2[t, k1, k2]
rewrites as

y2[t, k1, k2] = b2[k2]

+
∑

τ,κ1,j1

W2[τ, κ1, j1, k2]

×x1[t− τ, k1 − κ1 −Qj1]. (9)

The above is different from training two-dimensional ker-
nel on a time-chroma-octave tensor, since it does not suffer
from artifacts at octave boundaries.

The linear combinations of frequency bands that are
one octave apart, as proposed here, bears a resemblance
with engineered features for music instrument recogni-
tion [22], such as tristimulus, empirical inharmonicity, har-
monic spectral deviation, odd-to-even harmonic energy ra-
tio, as well as octave band signal intensities (OBSI) [14].

Guaranteeing the partial index n to remain low is
achieved by restricting the pitch spiral to its lowest frequen-
cies. This operation also partially circumvents the problem
of fixed spectral envelope in musical sounds, thus improv-
ing the validness of the stationarity assumption. In our ex-
periments, the pitch spiral ranges from A2 (110Hz) to A6

(1.76 kHz).
In summary, the classical two-dimensional convolutions

make a stationarity assumption among frequency neigh-
borhoods. This approach gives a coarse approximation
of the spectral envelope. Resorting to one-dimensional
convolutions allows to disregard nonstationarity, but does
not yield a pitch-invariant representation per se: thus, we
only apply them at the topmost frequencies, i.e. where
the invariance-to-stationarity ratio in the data is already
favorable. Conversely, two-dimensional convolutions on
the pitch spiral addresses the invariant representation of
sparse, transposition-covariant spectra: as such, they are
best suited to the lowest frequencies, i.e. where partials are
further apart and pitch changes can be approximated by

minutes tracks minutes tracks
piano 58 28 44 15
violin 51 14 49 22

dist. guitar 15 14 17 11
female singer 10 11 19 12

clarinet 10 7 13 18
flute 7 5 53 29

trumpet 4 6 7 27
tenor sax. 3 3 6 5

total 158 88 208 139

Table 1: Quantity of data in the training set (left) and test
set (right). The training set is derived from MedleyDB. The
test set is derived from MedleyDB for distorted electric gui-
tar and female singer, and from [14] for other instruments.

log-frequency translations. The next section reports exper-
iments on instrument recognition that capitalize on these
considerations.

6. APPLICATIONS

The proposed algorithms are trained on a subset of Med-
leyDB v1.1. [2], a dataset of 122 multitracks annotated
with instrument activations. We extracted the monophonic
stems corresponding to a selection of eight pitched instru-
ments (see Table 1). Stems with leaking instruments in the
background were discarded.

The evaluation set consists of 126 recordings of solo
music collected by Joder et al. [14], supplemented with 23
stems of electric guitar and female voice from MedleyDB.
In doing so, guitarists and vocalists were thoroughly put
either in the training set or the test set, to prevent any
artist bias. We discarded recordings with extended instru-
mental techniques, since they are extremely rare in Med-
leyDB. Constant-Q spectrograms from the evaluation set
were split into half-overlapping, 3-second excerpts.

For the two-dimensional convolutional network, each of
the two layers consists of 32 kernels of width 5 and height
5, followed by a max-pooling of width 5 and height 3. Ex-
pressed in physical units, the supports of the kernels are
respectively equal to 116ms and 580ms in time, 5 and 10
semitones in frequency. For the one-dimensional convolu-
tional network, each of two layers consists of 32 kernels
of width 3, followed by a max-pooling of width 5. Ob-
serve that the temporal supports match those of the two-
dimensional convolutional network. For the convolutional
network on the pitch spiral, the first layer consists of 32
kernels of width 5, height 3 semitones, and a radial length
of 3 octaves in the spiral. The max-pooling operator and
the second layer are the same as in the two-dimensional
convolutional network.

In addition to the three architectures above, we build hy-
brid networks implementing more than one of the weight
sharing strategy presented above. In all architectures, the
densely connected layers have K4 = 64 hidden units and
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piano violin dist. female clarinet flute trumpet tenor average
guitar singer sax.

bag-of-features 99.7 76.2 92.7 81.6 49.9 22.5 63.7 4.4 61.4
and random forest (± 0.1) (± 3.1) (± 0.4) (± 1.5) (± 0.8) (± 0.8) (± 2.1) (± 1.1) (± 0.5)

spiral 86.9 37.0 72.3 84.4 61.1 30.0 54.9 52.7 59.9
(36k parameters) (± 5.8) (± 5.6) (± 6.2) (± 6.1) (± 8.7) (± 4.0) (± 6.6) (± 16.4) (± 2.4)

1-d 73.3 43.9 91.8 82.9 28.8 51.3 63.3 59.0 61.8
(20k parameters) (± 11.0) (± 6.3) (± 1.1) (± 1.9) (± 5.0) (± 13.4) (± 5.0) (± 6.8) (± 0.9)
2-d, 32 kernels 96.8 68.5 86.0 80.6 81.3 44.4 68.0 48.4 69.1

(93k parameters) (± 1.4) (± 9.3) (± 2.7) (± 1.7) (± 4.1) (± 4.4) (± 6.2) (± 5.3) (± 2.0)
spiral & 1-d 96.5 47.6 90.2 84.5 79.6 41.8 59.8 53.0 69.1

(55k parameters) (± 2.3) (± 6.1) (± 2.3) (± 2.8) (± 2.1) (± 4.1) (± 1.9) (± 16.5) (± 2.0)
spiral & 2-d 97.6 73.3 86.5 86.9 82.3 45.8 66.9 51.2 71.7

(128k parameters) (± 0.8) (± 4.4) (± 4.5) (± 3.6) (± 3.2) (± 2.9) (± 5.8) (± 10.6) (± 2.0)
1-d & 2-d 96.5 72.4 86.3 91.0 73.3 49.5 67.7 55.0 73.8

(111k parameters) (± 0.9) (± 5.9) (± 5.2) (± 5.5) (± 6.4) (± 6.9) (± 2.5) (± 11.5) (± 2.3)
2-d & 1-d & spiral 97.8 70.9 88.0 85.9 75.0 48.3 67.3 59.0 74.0
(147k parameters) (± 0.6) (± 6.1) (± 3.7) (± 3.8) (± 4.3) (± 6.6) (± 4.4) (± 7.3) (± 0.6)

2-d, 48 kernels 96.5 69.3 84.5 84.2 77.4 45.5 68.8 52.6 71.7
(158k parameters) (± 1.4) (± 7.2) (± 2.5) (± 5.7) (± 6.0) (± 7.3) (± 1.8) (± 10.1) (± 2.0)

Table 2: Test set accuracies for all presented architectures. All convolutional layers have 32 kernels unless stated otherwise.

K5 = 8 output units.
In order to compare the results against shallow classi-

fiers, we also extracted a typical ”bag-of-features” over
half-overlapping, 3-second excerpts in the training set.
These features consist of the means and standard devia-
tions of spectral shape descriptors, i.e. centroid, bandwidth,
skewness, and rolloff; the mean and standard deviation of
the zero-crossing rate in the time domain; and the means
of MFCC as well as their first and second derivative. We
trained a random forest of 100 decision trees on the result-
ing feature vector of dimension 70, with balanced class
probability.

Results are summarized in Table 2. First of all, the bag-
of-features approach presents large accuracy variations be-
tween classes, due to the unbalance of available training
data. In contrast, most convolutional models, especially
hybrid ones, show less correlation between the amount of
training data in the class and the accuracy. This suggests
that convolutional networks are able to learn polyvalent
mid-level features that can be re-used a test time to dis-
criminate rarer classes.

Furthermore, 2-d convolutions outperform other non-
hybrid weight sharing strategies. However, a class with
broadband temporal modulations, namely the distorted
electric guitar, is best classified with 1-d convolutions.

Hybridizing 2-d with either 1-d or spiral convolutions
provide consistent, albeit small improvements with respect
to 2-d alone. The best overall accuracy is reached by the
full hybridization of all three weight sharing strategies, be-
cause of a performance boost for the rarest classes.

The accuracy gain by combining multiple models could
simply be the result of a greater number of parameters. To
refute this hypothesis, we train a 2-d convolutional network

with 48 kernels instead of 32, so as to match the budget
of the full hybrid model, i.e. about 150k parameters. The
performance is certainly increased, but not up to the hy-
brid models involving 2-d convolutions, which have less
parameters. Increasing the number of kernels even more
cause the accuracy to level out and the variance between
trials to increase.

Running the same experiments with broader frequency
ranges of 1-d and spiral convolutions often led to a de-
graded performance, and are thus not reported.

7. CONCLUSIONS

Understanding the influence of pitch in audio streams is
paramount to the design of an efficient system for auto-
mated classification, tagging, and similarity retrieval in mu-
sic. We have presented deep learning methods to address
pitch invariance while preserving good timbral discrim-
inability. It consists in training a feed-forward convolu-
tional network over the constant-Q spectrogram, with three
different weight sharing strategies according to the type of
input: along time at high frequencies (above 2 kHz), on a
Shepard pitch spiral at low frequencies (below 2 kHz), and
in time-frequency over both high and low frequencies.

A possible improvement of the presented architecture
would be to place a third convolutional layer in the time
domain before performing long-term max-pooling, hence
modelling the joint dynamics of the three mid-level feature
maps. Future work will investigate the association of the
presented weight sharing strategies with recent advances in
deep learning for music informatics, such as data augmen-
tation [18], multiscale representations [1,11], and adversar-
ial training [15].
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