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Abstract—In the context of automatic speech recognition and
acoustic event detection, an adaptive procedure named per-
channel energy normalization (PCEN) has recently shown to out-
perform the pointwise logarithm of mel-frequency spectrogram
(logmelspec) as an acoustic frontend. This article investigates the
adequacy of PCEN for spectrogram-based pattern recognition
in far-field noisy recordings, both from theoretical and practical
standpoints. First, we apply PCEN on various datasets of natural
acoustic environments and find empirically that it Gaussianizes
distributions of magnitudes while decorrelating frequency bands.
Secondly, we describe the asymptotic regimes of each component
in PCEN: temporal integration, gain control, and dynamic range
compression. Thirdly, we give practical advice for adapting PCEN
parameters to the temporal properties of the noise to be mitigated,
the signal to be enhanced, and the choice of time-frequency
representation. As it converts a large class of real-world sound-
scapes into additive white Gaussian noise (AWGN), PCEN is
a computationally efficient frontend for robust detection and
classification of acoustic events in heterogeneous environments.

Index Terms—Acoustic noise, acoustic sensors, acoustic signal
detection, signal classification, spectrogram.

I. INTRODUCTION

FREQUENCY transposition is a major factor of intra-class
variability in many sound classification tasks, including au-

tomatic speech recognition (ASR) [1], acoustic event detection
(AED) [2], and bioacoustic species classification [3]. Tuning
auditory filters to the perceptual mel scale provides a time-
frequency representation, named mel-frequency spectrogram, in
which the frequency transpositions of any periodic audio signal
become vertical translations [4]. In the presence of a single
source, this property allows convolutional operators in the time-
frequency domain [5], such as convolutional neural networks
[1] and time-frequency scattering [6], to extract pitch contours
as spectrotemporal patterns, regardless of their fundamental
frequency – a property known as equivariance [7], [8].

Yet, there is often more than one active source in real-world
audio recordings, especially outdoors [9]. Even after narrowing
down the classification task to the identification of the most
salient source only (thereafter called foreground), the presence
of background noise is detrimental to equivariance along the
mel-frequency axis [10]. Indeed, on one hand, intra-class
variability causes frequency transposition of the foreground
while leaving the background unaffected. On the other hand,
equivariance is only possible if foreground and background
happen to be transposed simultaneously. The generalizability
of learned convolutional kernels across acoustically similar
events of distinct fundamental frequencies is hindered by the
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(a) Logarithmic transformation.
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(b) Per-channel energy normalization (PCEN).

Fig. 1. A soundscape comprising bird calls, insect stridulations, and a passing
vehicle. The logarithmic transformation of the mel-frequency spectrogram (a)
maps all magnitudes to a decibel-like scale, whereas per-channel energy
normalization (b) enhances transient events (bird calls) while discarding
stationary noise (insects) as well as slow changes in loudness (vehicle). Data
provided by BirdVox. Mel-frequency spectrogram and PCEN computed with
default librosa 0.6.1 parameters and T = 60ms (see Section IV).

contradiction between these two assumptions. To reconcile
them, the background must result from a stochastic process
that is stationary along the mel-frequency axis [11]. Indeed,
the robustness of deep neural networks to adversarial additive
perturbations has been shown to be theoretically optimal if
background noise in the training set is additive, white, and
Gaussian (AWGN) [12]. However, in the absence of any further
processing, magnitudes in the mel-frequency spectrogram
E(t, f ) of real-world acoustic scenes are typically sparse and
strongly correlated, both along time t and mel frequency f
[13], and thus not approximable by AWGN.

Per-channel energy normalization (PCEN) [14] has recently
been proposed as an alternative to the logarithmic transfor-
mation of the mel-frequency spectrogram (logmelspec), with
the aim of improving robustness to channel distortion. PCEN
combines dynamic range compression (DRC, also present in
logmelspec) and adaptive gain control (AGC) with temporal
integration. AGC is a prior stage to DRC involving a low-pass
filter φT at a time scale T , thus yielding

PCEN(t, f ) =

(
E(t, f )

(ε +(E
t∗φ T )(t, f ))α

+δ

)r

−δ
r (1)

where α,ε,r, and δ are positive constants. While DRC reduces
the variance of foreground loudness, AGC is intended to sup-
press stationary background noise. The resulting representation
has shown to improve performance in far-field ASR [15], AED
[16], keyword spotting [14], [17], and vocal activity detection
in music [18]. However, the literature is yet to provide clear
insight into why and how PCEN works.
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This article aims to address this gap by showing empirically
how PCEN Gaussianizes and whitens mel-frequency magnitude
spectra in various acoustic conditions, characterizing the effect
of its various parameters by means of theoretical and practical
insights combined, and providing concrete guidelines in setting
them to optimize performance in a given application context.

II. WHY PCEN WORKS: A STATISTICAL ANALYSIS

Figure 1 compares logmelspec and PCEN on a complex
acoustic scene: while PCEN enhances chirped events, it
converts background noise into a spectrotemporal texture
that is devoid of long-range interactions. To demonstrate this
property across a variety of acoustic conditions, we perform
a comparative statistical analysis of logmelspec and PCEN
output on a sample of urban, periurban, and rural recordings.

A. Datasets

The SONYC dataset consists of 66 ten-second recordings
sampled from from 51 sensors deployed across NYC during
several months [19], and spanning 22 urban sound classes:
car horn, crowd, jackhammer, etc. The SONYC dataset
thus amounts to 22× 3× 10 = 660 seconds of audio (7.3M
coefficients).

The DCASE 2013 Scene Classification (SC) dataset was
recorded in various periurban locations — both indoor and
outdoor — near London, UK, by a person wearing a binaural
microphone [20]. It consists of 100 half-minute recordings from
ten different soundscape classes (open air market, restaurant,
bus, etc.) amounting to 100×30= 3000 seconds of audio (33M
coefficients).

The BirdVox project uses nine acoustic sensors near Ithaca,
NY, USA, for monitoring avian migration [21]. Out of the 7k
hours of audio in the full BirdVox data, we manually curate
15 one-minute recordings; the resulting subset amounts to
15×60 = 900 seconds of audio (10M coefficients).

B. Gaussianization of magnitudes

Figure 2 displays a histogram of all magnitudes in the
matrix of mel-frequency spectrogram coefficients, after either
logarithmic transformation or PCEN. We observe that, for each
of the three datasets, logmelspec magnitudes exhibit a skewed
distribution, either left (BirdVox) or right (SONYC, DCASE
2013 SC). Replacing the logarithm by an adapted Box-Cox
power transform [22] could, in principle, improve normality,
but the maximum likelihood inference of its two parameters
(offset and exponent) is inadequate for real-time applications.
Furthermore, we found in practice that both logarithm and
adaptive Box-Cox led to leptokurtic (thin-tailed) distributions.
On the contrary, PCEN successfully brings the distribution of
magnitudes closer to Gaussian, with skewness and kurtosis
both negligible.

The Shapiro-Wilk test of normality indicates statistically
significant evidence to reject the claim that the logarithmic
transformation Gaussianizes the distribution of spectrogram
magnitudes (p < 0.005 on all three datasets). At the same time,
the same test fails to reject the null hypothesis of normality in
the distribution of PCEN magnitudes.

SONYC DCASE 2013 SC BirdVox

(a) Logarithmic transformation.

(b) Per-channel energy normalization (PCEN).

Fig. 2. Distributions of magnitudes in the mel-frequency spectrogram after
logmelspec (a), and PCEN (c), as estimated on three datasets of acoustic
scenes: SONYC (left); DCASE 2013 SC (middle); and BirdVox (right). Each
distribution is scaled to null mean and unit variance, and discretized with 500
histogram bins ranging between −4 and 4. For comparison, the dashed line
indicates the standard normal distribution. See Subsection II-B for details.

SONYC DCASE 2013 SC BirdVox

(a) Logarithmic transformation.

(b) Per-channel energy normalization (PCEN).

Fig. 3. Covariance matrices of frequency channels after logarithmic transfor-
mation (a) and PCEN (b), as estimated on three datasets of acoustic scenes:
SONYC (left); DCASE 2013 (middle); and BirdVox (right). Darker shades
indicate larger covariances in absolute value. See Subsection II-C for details.

C. Spectrogram whitening by decorrelation of frequency bands

Figure 3 displays the covariance matrices of mel-frequency
spectrogram coefficients across frequency channels. While
the logarithmic transformation suffers from strong cross-
correlations between non-adjacent bands, the covariance matrix
of PCEN is close to identity, thus suggesting that noise is
“whitened”.

III. HOW PCEN WORKS: AN ASYMPTOTIC ANALYSIS

PCEN’s ability to Gaussianize and whiten the background
of acoustic recordings is the result of its three component
operations of temporal integration, adaptive gain control, and
dynamic range compression. In this section, we aim to elucidate
the parameter space of these three operations by means of an
asymptotic analysis.

A. Temporal integration

Filtering each subband f in E(t, f ) with φ T aims at
estimating the intensity of background noise at f while
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Fig. 4. Bode plot of the filter |φ̂ T (ω)|2, measured in relative magnitude (dB)
as a function of the ratio ω

ωc
between frequency and cutoff frequency ωc =

2πτ

T .
The time scale T is alternatively set to 1012τ (left), 1022τ (middle), and 1032τ

(right). We observe a sidelobe falloff of 10 dB per decade in the stopband.
Solid lines and shaded areas respectively denote asymptotic bounds and their
corresponding error margins, as proved in Proposition III.1. The dashed purple
(resp. green) vertical line denotes the cutoff (resp. Nyquist) frequency.

remaining invariant to the intensity of foreground events. Under
the assumption that the amplitude modulations (AM) of the
foreground at f are faster than those of the background, T
should be chosen to be above typical periods of foreground
AM and below those of background AM. The same can be said
of frequency modulation (FM): PCEN enhances chirped events
in the mel-frequency spectrogram that move from one subband
f to the next in less time than T while attenuating slower FM.
Thus, T is the transition threshold between a stationary regime
of background and a transient regime of foreground.

The original implementation of PCEN [14] defines φ T (t) as
a first-order IIR filter whose response to E(t, f ) is

M(t, f ) = (E∗φ T )(t, f ) = sE(t, f )+(1− s)M(t− τ, f ), (2)

where 0 < s < 1 is the weight of the associated autoregressive
process (AR(1)) and τ is the discretization time step (“hop
size”) in seconds.

Proposition III.1. The autoregressive filter φ T defined in
Equation 2 is a low-pass filter of gain 0dB, cutoff frequency
ωc =

2πτ

T = arccos(1− s2

2(1−s) ) at 3 dB, and sidelobe falloff of
10 dB per decade near ωc.

Figure 4 illustrates the frequency response of φ T for different
values of T .

B. Adaptive gain control (AGC)

The smoothed mel-frequency spectrogram M(t, f ) estimates
the level of stationary background noise level in each frequency
band f (where background is defined as slower AM than T ),
and serves to adapt the gain level in the denominator of the
following equation:

G(t, f ) =
E(t, f )

(M(t, f )+ ε)α
, (3)

where 0 < α < 1 (resp. ε > 0) is the exponent (resp. soft
threshold) of AGC. This stage resembles mean-variance renor-
malization [23], relative spectra (RASTA) [24], and cepstral
mean normalization [25].

The parameter ε distinguishes two regimes: silent (M(t, f )�
ε) and active (M(t, f ) � ε). Multiplying E(t, f ) by some
constant C leads to G(t, f ) being multiplied by approximately

Fig. 5. Static compression characteristic of gain M 7→ (ε+M)−α , as a function
of the ratio M

ε
between input magnitude M and soft threshold ε . The exponent

α is alternatively set to 0.1 (left), 0.5 (middle), and 1.0 (right). Solid lines and
shaded areas respectively denote asymptotic bounds and their corresponding
error margins, as proved in Proposition III.2. The dashed purple vertical line
denotes the transition M = ε .

C in the silent regime and by C1−α in the active regime. For
ε of the order of unit roundoff and α close to 1, the following
proposition proves that AGC is nonexpansive in quasi-silent
frequency bands and strongly compressive in active frequency
bands.

Proposition III.2. G(t, f ) is asymptotically equivalent to:
(i) E(t, f )/εα if M(t, f )� ε and to (ii) E(t, f )/M(t, f )α if
M(t, f )� ε .

Figure 5 illustrates the empirical fit of the characteristic M 7→
(M+ ε)−α to the asymptotic regimes described in Proposition
III.2. In the active regime, bringing α closer to 1 (resp. to 0)
leads to more (resp. less) cancellation of background noise.

In the limit case ε = 0 and α = 1, the proposition below
proves that spectral equalization does not affect G, because its
effect on the numerator E is compensated by AGC with M.

Proposition III.3. Let h(t) be the impulse response of some
acoustic environment or recording device. If |ĥ|( f ) = 0 for
f < 1

T and |ĥ|( f )> 0 for every f in the audible range, G is
invariant to the filtering of the underlying waveform by h.

This result, derived from [26], makes PCEN suitable for
remote sensing applications, where acoustic models need to
be robust to variations in the absorption properties of the
environment, as well as in sensor technology [5], [27].

C. Dynamic range compression (DRC)

The last stage of PCEN is the addition of a positive bias δ

to G(t, f ), followed by pointwise exponentiation of the sum:

PCEN(t, f ) =(G(t, f )+δ )r−δ
r, (4)

where 0 < r < 1 (resp. δ > 1) is the exponent (resp. soft
threshold) of dynamic range compression.

The parameter δ distinguishes two regimes: quiet (G� δ )
and loud (G� δ ) after AGC. For M(t, f )� ε , multiplying
E(t, f ) by some constant C leads to G(t, f ) being multiplied by
C1−α in the quiet regime, and by Cr(1−α) in the loud regime.
Therefore, DRC is stronger for smaller values of r.

Proposition III.4. PCEN is asymptotically equivalent to: (i)
rδ (r−1)G for G� δ and to (ii) Gr for G� δ .
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Fig. 6. Static compression characteristic of dynamic range compressions
G 7→ (G+δ )r−δ r , as a function of the ratio G

δ
between input magnitude G

and soft threshold δ , for different values of r: 0.25 (left), 0.5 (right), and 0.75
(right). Solid lines and shaded areas respectively denote asymptotic bounds
and their corresponding error margins, as proved in Proposition III.4.

DRC resembles a spectral substraction in the context of
speech restoration [28]. Figure 6 illustrates the empirical fit of
the characteristic G 7→ (G+δ )r−δ r to the asymptotic regimes
described in Proposition III.4.

IV. PRACTICAL RECOMMENDATIONS

A. Setting parameters T and s

As discussed in Subsection III-A, the time constant T
(directly linked to the dimensionless parameter s) should
be longer than the time taken by a frequency-modulated
foreground event to move from one subband f to another,
adjacent subband. For a mel-frequency spectrogram of N bands
ranging between mel( fmin) and mel( fmax), a rule of thumb for
PCEN in AED is

T × c×N
mel( fmax)−mel( fmin)

= K, (5)

where c is the typical chirp rate of the event of interest,
measured in mels per second; and K is some constant,
depending on the reverberation properties of the environment.
If the mel-frequency spectrogram is replaced by a constant-Q
transform, the rule of thumb simply becomes T × c×Q = K,
where c (resp. Q) is measured in octaves (resp. octaves per
second). K is of the order of 1 in dry environments and above
10 in highly reverberant environment, e.g. bioacoustic event
detection [29], [30].

In Equation 5, the optimal value of T does not solely depend
on the physical phenomenon of interest (through the chirp rate
c and reverberation constant K), but also on the choice of
parametrization of the mel-frequency spectrogram (through N,
fmin, and fmax). Therefore, in the context of hyperparameter
optimization, any change in the resolution of the time-frequency
representation should be reflected in an update of T , which in
turn updates s through the following formula.

Proposition IV.1. At a discrete rate τ−1, the weight s of the
autoregressive filter φ T defined in Equation 2 is

s =

√
1− cos

2πτ

T

(√
3− cos

2πτ

T
−
√

1− cos
2πτ

T

)
. (6)

B. Setting parameters ε and α

In accordance with [14], we found empirically that T and
α were the most important parameters. Although α = 1 leads

to an optimal cancellation of stationary background (see Prop.
III.3), it may skew the distribution of magnitudes towards
the right. Setting α below 1 reduces skewness and brings the
background closer to AWGN. However, we have found ε to
have no effect as long as it is set below unit roundoff.

C. Setting parameters δ and r

The effects of δ and r are more noticeable on the foreground
time-frequency regions than on the background. The DRC
threshold δ > 1 sets a tradeoff between improving average
foreground-to-background ratio (δ →+∞ in highly noisy ap-
plications) and reducing variance in the loudness of foreground
events (δ → 1). Moreover, if the foreground source is transient
with respect to the time scale T and at distance d from the
sensor, the energy in E(t, f ) is proportional to 1

d2 : therefore,
under a fixed background noise level M(t, f ), one has G∼ 1

d2

and PCEN∼ 1
d2r . We recommend r = 1

2 for indoor applications
(d ∼ 10m) and r = 1

4 for outdoor applications (d ∼ 100m).

D. Open source implementation of PCEN in librosa

We release an open source implementation of PCEN in
librosa v0.6.1 [31], whose default parameters are identical to
[14]: T = 400ms (i.e. s ≈ 0.025 with τ = 23ms), ε = 10−6,
α = 0.98, δ = 2, and r = 1

2 . Whereas these defaults are
best suited to indoor applications (e.g. ASR in the smart
home), bioacoustic event detection distinguishes itself by faster
modulations of foreground (lower T ), higher skewness of
background magnitudes (lower α), a louder background (higher
δ ), and more distant sources (lower r). Thus, we adopt the
following settings in our bird detection work: T = 60ms with
Q = 50 and τ = 1.5ms, ε = 10−6, α = 0.8, δ = 10, and
r = 0.25. The inspection of magnitude histograms (Figure
2) and covariance matrices (Figure 3) suggests that such
settings lead to a successful Gaussianization and decorrelation
of subbands.

V. CONCLUSION

Unlike batch learning decorrelation procedures such as prin-
cipal component analysis (PCA), PCEN can be implemented
in real time and distributed across sensors [19]; in addition, it
preserves the locality structure of harmonic patterns along the
mel-frequency axis [32]. Although it depends on five parameters
(T , α , ε , r, and δ ) that are possibly frequency-dependent,
this article has shown that each of these parameters has an
interpretable purpose, and given asymptotic approximations
of the PCEN equations in ideal regimes: silent vs. active (ε),
stationary vs. transient (T ), and quiet vs. loud (δ ). In the
context of deep learning for ASR and AED, our results could
yield well-adapted initial values for the trainable version of
PCEN [14], as well as a post hoc interpretation of all learned
parameters.
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