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Abstract. Early detection of sleep arousal in polysomnographic (PSG) signals is
crucial for monitoring or diagnosing sleep disorders and reducing the risk of further
complications, including heart disease and blood pressure fluctuations. In this paper,
we present a new automatic detector of non-apnea arousal regions in multichannel
PSG recordings. This detector cascades four different modules: a second-order
scattering transform (ST) with Morlet wavelets; depthwise-separable convolutional
layers; bidirectional long short-term memory (BiLSTM) layers; and dense layers. While
the first two are shared across all channels, the latter two operate in a multichannel
formulation. Following a deep learning paradigm, the whole architecture is trained in
an end-to-end fashion in order to optimize two objectives: the detection of arousal onset
and offset, and the classification of the type of arousal. The novelty of the approach
is three-fold: it is the first use of a hybrid ST-BiLSTM network with biomedical
signals; it captures frequency information lower (0.1Hz) than the detection sampling
rate (0.5 Hz); and it requires no explicit mechanism to overcome class imbalance in
the data. In the follow-up phase of the 2018 Physionet/CinC Challenge the proposed
architecture achieved a state-of-the-art area under the precision-recall curve (AUPRC)
of 0.50 on the hidden test data, tied for the second-highest official result overall.

Keywords: Polysomnography, Sleep Wake Disorders, Arousal, Scattering Transform,
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1. Introduction

Sleep induces many physiological correlates in the brain, which vary consistently through
time and across subjects. Through time, they delineate a sequence of sleep stages,
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from wakefulness to deep sleep, as well as so-called “paradoxical” rapid eye motion
(REM) sleep. Across subjects, they are harbingers of the presence of sleep-related
disorders. There is a growing amount of evidence that such disorders are linked with
multiple widespread pathologies, including weight gain, depression, heart disease, and
diabetes. Consequently, advancing our current knowledge of the neurophysiology of
sleep in humans is, more than a challenging research question, also an issue of public
health.

The recurrence of short interruptions during sleep, known as arousals, are of
particular concern to medical practitioners (Halász et al. 2004). This is because they
reflect a broad range of symptoms, among which sleep apnea is the most common, yet
certainly not the only possible one causing disturbance of sleep. Sleep arousals can also
be spontaneous, result from teeth grinding, partial airway obstructions, or even snoring
Ghassemi et al. (2018a) and it is these types of non-apneal arousals that are the focus of
our paper. Furthermore, arousals cause a sudden change from REM sleep to non-REM
sleep, and may in some cases cause prolonged wakefulness. Therefore, within the more
general scope of improving the quality of sleep, the focus on accurately and precisely
detecting sleep arousals plays a key role.

Inside the brain, arousal disrupts the patterns of electrical activity that are typical
of healthy sleep. Electroencephalography (EEG) can directly measure the resulting
disruption. Besides EEG, since arousals affect the entire body, they indirectly impact
electromyogram (EMG), electrooculogram (EOG), electrocardiogram (ECG), oxygen
saturation (SaO2), respiratory airflow (AIRFLOW) and respiratory movements (CHEST
and ABD). The collection and gathering of all these aforementioned vital signs under one
multidimensional time series is a clinical procedure that is known as polysomnography
(PSG). Certified sleep technologists have learned the skill of visually interpreting the
temporal oscillations of these PSG recordings, so as to pinpoint the presence of sleep
arousals.

One major hindrance to the scalability of diagnosing sleep disorders from PSG
recordings is the amount of human labor that their annotation incurs. Indeed,
given that sleep arousals only last for a few seconds at once, they appear on PSG
as transient phenomena, hence requiring practitioners to scan whole signals at a
relatively fine temporal resolution. This shortcoming calls for the facilitation, if not the
complete automation, of sleep arousal monitoring. In the future, a fast and accurate
computational system for detecting sleep arousals could potentially be shipped with PSG
hardware toolkits, so that timestamps of predicted arousals would appear on screen as
a supplement to raw PSG acquisition.

The physiological frequency bands of interest for the PSG signals generally range
from 0.05 to several hundreds of cycles per second. The lowest (delta) band of
conventional EEG study has a lower limit of 0.5 Hz or 1.0 Hz (depending on the
definition) while 100 Hz corresponds to the highest frequency of the EEG gamma band
(Niedermeyer & da Silva 2004). EEG frequency bands as low as 0.1 and 0.01 Hz have
also been identified as potentially informative, referred to as ‘slow-frequency’ and ‘infra-
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slow’ EEG bands, respectively (Hiltunen et al. 2014). The ECG frequency spectrum is
generally considered to be 0.05-100 Hz (Clifford et al. 2006), although Jarvis & Mitra
(2000) reported ECG activity related to sleep apnea down to 0.02 Hz. EMG ranges
from 5.0 Hz to much higher frequencies up to 450 Hz (Viitasalo & Komi 1977). The
other modalities of respiratory movements, AIRFLOW and SaO2 are lower frequency
phenomena whose respective coherence spectra show activity between 0.05 and 0.35
Hz (Nino et al. 2013).

In this paper, we present a new computational system for the detection and
classification of sleep arousals from PSG recordings. The main contribution of this
paper is to demonstrate that it is practically feasible, and even beneficial to inter-subject
generalization, to integrate many different physiological time scales and modalities into
a single time-invariant model for PSG monitoring. First, our system is multiscale: it
combines ST coefficients with convolutional operators, thus extracting information at
time scales ranging from the millisecond to the minute, both in terms of baseband and
narrowband amplitude modulations of power spectral density. Secondly, our system
is multimodal: rather than engineering a different transformation to each one of the
modalities of polysomnography, it learns a single transformation via the convolutions
that is shared across all of them: EEG, ECG, EMG, and so forth. We find that inducing
an autoregressive structure that is both multiscale and multimodal allows us to train a
time-invariant deep learning model whose effective receptive field is considerably larger
than in a linear autoregressive model. Indeed, each recursive update of latent variables
in the model relies on the values of over 105 samples in the multidimensional time
domain of PSG signals; yet, the model remains computationally tractable and incurs
little statistical overfitting, because observations in the distant past affect comparably
less trainable parameters than samples in the recent past.

Our system composes three recently published methods in signal processing and
deep learning: scattering transform (ST); depthwise-separable convolutional layers
(CNN); and bidirectional long-short term memory (BiLSTM) layers. Although these
methods may have found biomedical engineering applications in the past, this paper is
the first to implement all of them together, as parts of a common end-to-end pipeline.
In particular, to the best of our knowledge, no previously published machine-learning
system has employed the scattering transform as a multimodal frontend to either, let
alone both, depthwise-separable or bidirectional models.

We report numerical results of our best performing model, as well as of
some less sophisticated variants, upon participating in the “You Snooze, You Win”
PhysioNet/CinC 2018 Challenge for automatic detection and classification of sleep
arousals (Ghassemi et al. 2018a). The dataset of this challenge contains 994 time
series for training and 989 time series for testing. This paper expands upon our
work submitted to the 2018 Challenge (Warrick & Homsi 2018b) which ranked sixth
in the official phase. Herein we discuss the methodological implications of having
adopted a multiscale and multimodal approach to the problem and propose three further
architectural improvements to both accuracy and speed. First, it is the first use of
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a hybrid Scattering Transform-Bidirectional Long Short Term Memory (ST-BiLSTM)
network with biomedical signals. Secondly, it captures frequency information much
lower (0.1Hz) than the detection sampling rate (0.5Hz). Thirdly, we notice that, in the
latest version of our model, it is no longer necessary to explicitly counteract the class
imbalance of the training data by way of an importance sampling heuristic.

2. Related Work

In this section, we briefly review the prior literature on computational methods for
sleep arousal detection. Our review consists of two parts, respectively corresponding to
methods outside and inside the 2018 challenge.

2.1. Prior approaches

Historically, most published methods for detecting transients in biomedical signals
compose two stages: domain-specific feature extraction and general-purpose machine
learning. In the context of polysomnography, features are engineered either in the
time domain, the frequency domain, or the time-scale domains. Furthermore, the most
widespread machine learning methods are decision trees (De Carli et al. 1999, Shmiel
et al. 2009, Agarwal 2006), multi-layer perceptrons (MLP) (Huupponen et al. 1996),
and support vector machines (SVM) (Cho et al. 2006).

The design of handcrafted features and finding their optimal combination for
improving classifier performance can be difficult and time-consuming; to overcome this
issue in recent years, the feature-engineering step is often automated using deep neural
networks (DNN) such as CNNs (Aggarwal et al. 2018, Tsinalis et al. 2016, Zhang & Wu
2018).

De Carli et al. (1999) recorded EEG (F4-C4 and C4-O2 channels) and a chin EMG
to develop their arousal detector, using the American Academy of Sleep Medicine criteria
defining all types of arousal (AASM 1992). Their dataset was relatively small, consisting
of eleven overnight recordings of patients with various pathological conditions. They
established their ground truth from an aggregation of two human experts. Then, they
compared the arousal detection of their linear-discriminant classifier to the markings of
the same two human experts on independent test data. They found that the sensitivity
was higher (88.1% vs. 72.4% and 78.4%) while the precision was lower (74.5% vs. 83.0%
and 82.0%). Since ground truth was derived from the marking of these same humans,
the reported human scores are possibly too optimistic to reflect a real-world use case.
Despite this caveat and the small dataset size, the results of De Carli et al. (1999) offer
a useful insight that automating the detection of sleep arousals has great application
potential, yet requires the development of advanced techniques in signal processing and
machine learning.

Although numerous publications have proposed to apply deep learning to sleep
stage classification (wakefulness, stage 1, stage 2, stage 3 and REM) (Aggarwal et al.
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2018, Tsinalis et al. 2016, Zhang & Wu 2018), fewer works have applied them to sleep
arousal data. Recently, Saeed et al. (2017) explored the potential of CNN for classifying
sleep arousals into three categories: under-aroused, normal, and over-aroused. They
measured raw physiological signals collected from wrist-wearable devices, as worn by
eleven subjects. They found that their CNN outperformed a non-convolutional baseline,
with respective F-scores of 0.82 and 0.75.

2.2. Approaches of the 2018 Challenge

Our approach submitted to the 2018 Challenge was rated sixth out of nineteen teams
during the official phase. These top-six approaches all used DNNs, and four of these,
including ours, also used an ensemble method. Therefore, this section is divided in two
subsections: the first one concerns approaches that used a single deep model, while the
second focuses on those approaches that used an ensemble method. All performance
measures refer to the area under the precision-recall curve (AUPRC) of the algorithm
on the hidden test set. Table 1 shows the various studies conducted on the automated
detection of arousal regions in PSG signals, along with the results yielded by the present
study which are discussed in section 4.

2.2.1. Deep Architecture He et al. (2018) first partitioned PSG signals into smaller
segments of 100 s to overcome the class-imbalance problem and to reduce the long
training time required for the large dataset. The segments were then fed into a sequence-
to-sequence neural network composed of two parts. The first part was dedicated to
feature extraction which consisted of a 1D-CNN and a BiLSTM, while the second
part was for feature classification which was composed of a fully connected layer. The
proposed NN could effectively identify the arousal regions with an AUPRC of 0.43.

Varga et al. (2018) combined hand-crafted polysomnographic features with a
deep-learning architecture. Sixty-eight features from time, frequency, statistical and
information-theoretic domains were extracted from EEG, EOG, EMG, AIRFLOW and
ECG signals, while a scaled version of SaO2 was used directly. The extracted features
were first normalized and then resampled at 21 times over a two-minute window, with
denser sampling around the central current feature sample. The resulting 68×21 feature
map was advanced at 1 s intervals. The DNN consisted of a 2D convolution layer
and two dense layers with seven outputs; two of which were for arousal and non-
arousal classification, while the remaining ones were for sleep stage classification. Class
imbalance was addressed by discarding all invalid arousal samples and some non-arousal
samples, ensuring that at least 25% of the training feature samples had the (minority)
arousal target. Other experiments used the sleep stage as an auxiliary target with
dropout and post-processing strategies, but the performance of the proposed NN did
not significantly improve. This approach achieved an AUPRC of 0.42.

Miller et al. (2018) used a convolutional-deconvolutional neural network inspired by
densely connected CNN and semantic segmentation networks (Jégou et al. 2017). Their
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Table 1. Comparison of DNN-based 2018 Challenge Approaches
Ref. Excluded

Channels Preprocessing Base Classifier Ensemble
Classifier AUPRC

Howe-Patterson et al. ECG

FIR,
down-sampled,
FFT
convolution.
Scaling SaO2

Multiple dense
convolutional
units+BiLSTM
with 4 outputs.

Averaging
per sample
over 4
fold-
classifiers

0.54

Þráinsson et al. NA Time, frequency
and statistical.

BRNN-LSTM
and a dense
layer with 50
outputs.

Averaging
per sample
over 5
fold-
classifiers

0.45

He et al. NA Signal
segmentation

Part 1: 1-D
CNN and
BiLSTM.
Part 2: dense
layer.

NA 0.43

Varga et al. CHEST

Time & frequency.
9, 5 and 10
second length
windows of EEG,
EOG and AIRFLOW,
respectively.
Scaling SaO2

2D convolution
and two dense
layers with 128
and 7 outputs
respectively

NA 0.42

Patane et al.

CHEST,
Chin1
-Chin2,
ECG,
E1-M2,
O2-M2,
C4-M1,
F4-M1
and
O1-M2

Band pass filter
on EEG,
subsampling,
normalization
of overlapped
segments and
data
augmentation.

6 layers one-
dimensional
CNN
architecture
with 3/4
dense layers,
Siamese
architecture
and of 3dense
layers.

Averaging of
overlapped
slices of
segments and
of AUPRC of
10-folds.

0.40

Miller et al. NA Signals -1-
padded

convolutional-
deconvolutional
neural network.

NA 0.36

Warrick & Homsi NA None
(ST- LSTM1,
and Dense.

Averaging
per sample
over 10
fold-
classifiers

0.36

Present
Study NA None

ST, BN,
DSC-1D,
BiLSTM1,
BN, BiLSTM2,
BN and Dense.

Averaging
per sample
over 10
fold-
classifiers

0.50

model consisted of 8 convolutional layers, 8 deconvolutional layers, and a dense-softmax
layer to calculate the probability distribution over the binary classes. All signals were
padded with ones to a length slightly longer than the longest record. This approach
achieved an AUPRC of 0.36.

2.2.2. Deep ensemble classifier The top two approaches Howe-Patterson et al. (2018)
and Þráinsson et al. (2018) employed an ensemble algorithm, suggesting that this was
an important design decision for this problem.

Howe-Patterson et al. (2018) used multiple dense convolutional units (DCU) and a
BiLSTM layer. All PSG channels, excluding ECG, were anti-aliased by applying a finite
impulse response (FIR) filter, down-sampled to 50Hz and normalized over a 18-minute
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moving window. Similar to Varga et al. (2018), they did a simple scaling of the SaO2

signal ensuring that physiologically relevant ranges were used. Four fold-classifiers were
first constructed and then their corresponding predictions were averaged to estimate the
final probability of sleep arousal regions. This ensemble yielded the top official-phase
AUPRC of 0.54.

Þráinsson et al. (2018) calculated time- and frequency-domain features of clinical
and statistical origins. These were fed into a DNN with a BiLSTM, a dense layer with
50 outputs and a final dense-softmax output layer. They trained five classifiers using the
same set of respiratory features, but with varying EEG-ECG channel selections. The
final prediction was determined by averaging each classifier output per sample. This
approach achieved an AUPRC of 0.45.

The approach presented in Patane et al. (2018) consisted of 4 phases: preprocessing,
windowing, data augmentation and classification. They preprocessed the EEG signals
with a [0.5-45] Hz band-pass filter and removed candidate movement artefacts. All
channels were segmented in 30 seconds time windows with 50% overlap and each segment
was sub-sampled to 50 Hz and normalized. Data augmentation was also performed
on-the-fly assuring that every batch of data had the same class proportion. Authors
designed a deep architecture for multi-channel sleep arousal detection from EEG, EOG,
EMG, AIRFLOW and SaO2 signals (the ECG signal was excluded). It consisted of a 6
layer 1D-CNN architecture with three dense layers for processing most of the channels
and with four dense layers for handling SaO2 signal. The feature vectors were first
merged together and fed through a Siamese architecture. Afterward, they used a
sequence of three fully-connected layers to estimate the probability of sleep arousal
for a whole window. The results for adjacent overlapping portions of segments were
averaged together. Comparison of single- and multi-modal classifiers demonstrated that
the multimodal model performing best while abdominal respiration (ABD) performed
best in isolation. Their multimodal model AUPRC was 0.40.

Our 2018 Challenge base classifier consisted of two main components: a
representation layer for feature extraction using the ST, and a sequencing learning
layer composed of three LSTM layers with a dense-softmax layer to obtain classification
predictions (Warrick & Homsi 2018b). An ensemble created by averaging the
probabilities of 10 base classifiers generated from cross-validation achieved an AUPRC of
0.36. Our challenge study also compared single and multi-modal classifiers with results
in accordance with those of Patane et al. (2018): the multi-modal classifier performed
best, while the smaller set of features Chin-CHEST-ABD performed best in isolation.
Our work and Miller et al. (2018) were the only approaches that processed the entire
signals as inputs without applying “feature engineering”, that is, without applying an
explicit feature design and selection approach.
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3. Methods

This section begins with an introduction to the 2018 Challenge dataset (Ghassemi
et al. 2018a,b). A detailed description of the workflow to identify arousal regions in
PSG signals is also described, which consists of three phases: data transformation,
classification and evaluation.

3.1. Dataset

The development and evaluation of our proposed approach was based on the 2018
Challenge dataset. It consists of 1,985 subjects monitored at the Massachusetts General
Hospital (MGH) sleep laboratory for the diagnosis of sleep disorders. The data were
partitioned into training (n=994) and hidden test sets (n=989). For each subject,
13 different physiological signals were collected during PSG sleep studies. The PSG
recordings include six channels of EEG (F3-M2, F4-M1, C3-M2, C4-M1, O1-M2 and O2-
M1), left eye EOG, an EMG lead placed at the chin (Chin1-2), respiratory movements
placed on the chest and abdomen (CHEST and ABD), a single lead of ECG, SaO2 and
AIRFLOW. The sampling rate for all signals and labels was 200Hz, sufficient to capture
most of the PSG signal frequency bands mentioned in the introduction.

The training data was provided with five-class sleep-state labels and thirteen-
class arousal-type labels. The sleep stages were annotated by clinical staff at the
MGH according to the American Academy of Sleep Medicine manual for the scoring
of sleep. The following six sleep stages were annotated in 30 second contiguous
intervals: wakefulness, stage 1, stage 2, stage 3, rapid eye movement (REM), and
undefined. Certified sleep technologists at the MGH annotated waveforms for the
presence of arousals that interrupted the sleep of the subjects. The annotated arousals
were classified as either: spontaneous arousals, respiratory effort related arousals
(RERA), bruxisms, hypoventilations, hypopneas, apneas (central, obstructive and
mixed), vocalizations, snores, periodic leg movements, Cheyne-Stokes breathing or
partial airway obstructions.

Target arousals were then defined as intervals from 2 seconds before a RERA arousal
begins, up to 10 seconds after it ends or from 2 seconds before a non-RERA, non-apnea
arousal begins, up to 2 seconds after it ends. Accordingly, the records for the training
data were provided with three-class labels: arousal (A, +1), non-arousal (NA, 0) and
unscored (NS, -1) regions.

3.2. Proposed solution

The main architecture of the base deep classifier shown in figure 1 consists of two
main components; representation learning and sequencing learning, which are described
below.

Our solution is designed in the spirit of full representation learning, i.e., learning
directly from the raw data without any preprocessing. But because the training data
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corpus was 134GB in size and we wanted a working solution on ‘modest’ computing
resources (e.g., a system with 32GB RAM and a single GPU with 12GB of memory), we
needed to make some tradeoffs. In the extreme, full representation learning from 200Hz
data is conceptually possible, but because the recordings are long (approximately 5M
samples), training time would be onerous. Therefore our original motivation to use ST,
a fixed nonlinear operation, was to provide a data reduction step before learning. LSTM
training time is also a function of sequence length, so this first decimation step by a
factor of 512 to a sampling rate of 0.5Hz for the detection function was critical to a
working solution.

3.3. Scattering Transform

The scattering transform is a multidimensional, nonlinear function of real-valued signals
(Bruna & Mallat 2013). In the past, this function has found practical applications in two
different domains of signal processing: time series forecasting (Andreux 2018) and signal
classification (Andén et al. 2015). Interestingly, the task of arousal detection in PSG
recordings lies at the interaction between these two perspectives. Indeed, sleep arousal
can either be regarded, first, as a disruption in the predictability of the time series; or,
alternatively, as a nonstationary pattern emerging from a stationary background. From
this observation, we give hereafter two intuitive justifications of the interest behind
adopting the scattering transform as a frontend to our deep learning system for sleep
arousal detection. We refer to Lostanlen (2017) for further details in the argumentation.

First, in the context of time series forecasting, the scattering transform aims to
encode, at every time step, past scalar values of a given sequence, and embed them into
a feature vector, that is, another time series of fixed dimensionality. The purpose of this
feature vector is to extract trends in the past values so that the prediction of the next
few future values is relatively simple. In this respect, there is empirical evidence that
the scattering transform reaches a favorable tradeoff between simplicity and accuracy:
on a large class of real-world time series, the regression of scattering coefficients has a
relatively high forecast accuracy, yet a relatively low intrinsic dimensionality (Andreux
2018).

In the specific case of the scattering representation, the feature space aggregates
two subspaces, hereafter called “orders”. The first order, which is comparable to
a discrete wavelet transform (DWT), decomposes past trends into 11 typical time
scales of periodicity which grow by factors of 2 from 10 ms to 10 s. As a result,
if the stationary process underlying the observed time series were to consist of two
independent linear trends of comparable periodicity, these would interfere within the
same first-order subband. Resolving this interference is precisely the purpose of the
second layer (Chudáček et al. 2014). More precisely, second-order scattering decomposes,
within each first-order subband, the temporal alternation between in-phase, constructive
interference and out-of-phase, destructive interference, again into multiple time scales
of periodicity. These second-order time scales are systematically greater than the
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Figure 1. Block diagram of the proposed methodology. ST=Scattering
Transform, BN=Batch Normalization, DSC=Depthwise-separable convolution, BiL-
STM=bidirectional Long-Short Term Memory.
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“baseband”, first-order time scales. Therefore, the number of pairs of time scales that
lead to a non-negligible outcome grows logarithmically with the second-order time scale.
In other words, in consideration of the dimensionality of its feature vector, the scattering
representation encodes its recent history with finer details, and its distant history with
coarser details. This procedure of adaptation temporal resolution as a function of time
lag is known in wavelet theory as foveation (Chang et al. 2000).

Secondly, in the context of signal classification, the scattering transform performs
a mapping of raw signal samples which reduces geometric, intra-class variability but
retains informative, inter-class variability (Mallat 2016). In the case of PSG, the
presence of small temporal lags and phase offsets between modalities is an example of
such uninformative intra-class variability. Indeed, although PSG samples all modalities
at a common rate of 200 Hz, spurious factors of experimental acquisition may cause
a slight asynchrony between any two of the 13 channels. Likewise, swapping a pair of
EEG electrodes leads to an inversion of electrical polarity, and thus a half-wave phase
shift. None of these random modifications of data acquisition across different trials and
subjects affect the task of interest. Therefore, it so appears that engineering a mid-level
representation which, by design, remains invariant to the action of channel-dependent
phase shifts is beneficial to statistical robustness and generalization.

Given a time series of low-level, short-term features, the simplest way to ensure
local invariance to time shifts is to apply a moving average. However, this local
averaging procedure comes at the expense of losing fine details in highly oscillatory
data. The rationale behind the scattering transform is, instead of building a linear
invariant to translation in a single step, to perform multiple nonlinear operations of
continuous wavelet transform and pointwise complex modulus, so as to demodulate the
input signal into progressively slower modulation subbands, hereafter called scattering
“paths” (Mallat 2011). In the case of PSG, we apply two of such nonlinear wavelet
modulus operators in a cascade before eventually convolving each path with a Gaussian
window function. For all modalities, we set the time constant of this Gaussian window
equal to 1 second. We used the open-source MATLAB library scattering.m (Lostanlen
2019) to compute the scattering coefficients.

In recent years, various authors in have proposed to train CNN models on scattering
transform features for audio signal processing, thus forming hybrid ST-CNN pipelines
(Peddinti et al. 2014, Fousek et al. 2015, Zeghidour et al. 2016, Andreux & Mallat 2018).
Conversely, there is a growing amount of literature on biomedical applications of the
scattering transform, in conjunction with shallow learning methods (Chudáček et al.
2014, Leonarduzzi et al. 2018). Yet, prior to Warrick & Homsi (2018b), there had not
been an empirical study on the applicability of deep learning from scattering coefficients
of biomedical signals. Furthermore, there had not been any deep learning architecture,
in any application domain, which trained long short-term memory networks (LSTM)
on scattering coefficients. We refer to Oyallon et al. (2017) for a review of the state
of the art in deep hybrid networks featuring both wavelet convolutions and trainable
convolutions.
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Another dimension in which our work is novel is the fact that we apply the
scattering transform on multimodal data. Although one prior study has applied
scattering transforms to stereophonic audio (Lostanlen & Andén 2016), the question
of training a machine learning model on the scattering representations of various
sources of physiological data in simultaneity has remained considerably under-studied.
In particular, the resort to depthwise-separable convolutions as an interface between
multiple single-channel scattering coefficients with one multichannel LSTM network is
a novel architectural contribution of ours.

3.4. Normalization

Because the generated ST coefficients had long exponential right tails, we performed a
normalization step to transform them to quasi-normal distributions. This was done in
two steps using the statistics of the training data for each ST path p of each channel e.
For each coefficient x[i, j, e, p] where i is the recording and j is the time sample, scaling
by the median (calculated over all i and j) was followed by a log-like transformation K
as in (1).

Norm(x[i, j, e, p]) = K
{

µ · x[i, j, e, p]
median(x[:, :, e, p])

}
(1)

In our 2018 submission we had used K(x) = log(x+1). However, the Gaussian filter
used to obtain the low frequency ST paths sometimes had transient negative values. We
therefore used a modified transform K(x) = sinh−1(x) = log[x+(x2+1)] which admitted
negative values. The constant µ was selected by searching for minimal skewness (i.e.,
quasi-normality). We first performed a search with coarse-grained resolution and then
repeated the search with a finer resolution. Finally, we confirmed by visual inspection
that the distributions were close to normal.

3.5. Classification Phase

The arousal detection task from the 13 channel PSG recordings was carried out through
two stages: building the base deep classifier and building the ensemble classifiers.

3.5.1. Depthwise-separable convolution The ST output is hierarchically structured by
channel e ∈ {1, ..., E} and ST path p ∈ {1, ..., P}. In our 2018 Challenge entry we used
J = 8 octave ST giving 8 first-order and

(
8
2

)
= 26 second-order coefficients, such that

P = 36. Our 2018 Challenge entry flattened the ST output as input to the subsequent
LSTM layer, ignoring this structure.

Lower-frequency information, down to 0.1Hz, is referred to in the EEG literature as
the ‘slow-frequency’ band (Hiltunen et al. 2014). In this new work we wished to capture
this information which required J = 11. This increased P to 11 +

(
11
2

)
= 66. This

near two-fold increase in P would significantly augment the DNN model weight count.
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Figure 2. Depthwise-separable convolution of ST-transformed PSG signals.

Futhermore, we wished to experiment with third-order ST which would add another(
11
3

)
= 165 coefficients.
Therefore, we considered strategies to overcome the impact of the ST complexity on

the model parameterization. We included this ST structure by factorizing the weights
of the first LSTM layer into E electrodes × ST paths. Such an approach should also
reduce rank, speed up training, and offer statistical regularization.

We chose a depthwise-separable convolution (DSC) (Chollet 2017) to address these
issues. A DSC separates a standard convolution into 2 steps as shown in figure 2 for
our configuration. We first perform the depthwise convolution X to mix the electrodes
for each ST path with the P × E filter map F :

X[p] =
∑

e

S[e, p]F [p, e] (2)

Then, the pointwise convolution mixes these transformed paths N times with P × N
feature map G. N can be chosen arbitrarily and we choose N = P to allow at least
one output for each path p. Output Y results from applying the bias B and activation
function ρ:

Y [n] = ρ
(
B[n] +

∑
p

X[p]G[p, n]
)

(3)

The total number of convolution coefficients including the bias weights is therefore
P × E + (P + 1) × N . For N = P = 66 ST paths per channel, the DSC weight
count is 5280. The main impact in overall weight count should occur in the subsequent
BiLSTM layer. LSTM weight counts can be implementation-specific, so we tested with
our Keras-Tensorflow subsystem for a precise comparison. We compared the weight
counts of direct ST-BiLSTM layers to ST-DSC-BiLSTM layers using N = P = 66 and
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100 cells per BiLSTM in each case. The former had 456,000 weights in the BiLSTM layer
while the latter had 134,400. Therefore, inserting the DSC layer between the ST and
BiLSTM layers had the effect of reducing the weight count by 69% for this architecture.

3.5.2. Sequence learning We chose LSTM units for arousal detection over ‘memory-
less’ feedforward approaches because we hypothesized that the LSTM memory (short
and long) might be important to interpret local and remote contexts. We had also used
LSTMs in the 2017 Challenge (Warrick & Homsi 2018a) for ECG arrythmia detection
where we demonstrated the value of both the long and short term memory of LSTM to
that problem. We chose BiLSTM units over unidirectional LSTM because we anticipated
that both past and future contexts of the PSG signals were important to detecting both
arousal onset and termination. We had intended to use BiLSTMs for our challenge
submission but were unable to do so because of time considerations: we noted that this
was indeed a promising development direction in its successful use by the other 2018
Challenge groups.

We constructed models with the architecture of figure 1 using 10-fold cross-
validation on the 2018 Challenge training data. The data was split into 10 non-
overlapping partitions to generate the test data for each fold. In each fold, we used
8/9 of the test-complement data for training and 1/9 for validation. The targets were
decimated to the 0.5Hz decision sampling rate and encoded as one-hot vectors for the
three classes arousal, non-arousal and unscored. To prepare for efficient GPU batch
training, both inputs and targets were end-padded to the length of the longest training
recording.

With the above partitioning of folds, we had 793 training samples, 100 validation
samples and either 99 or 100 test samples. We used RMSprop as the optimizer during
training using the default Keras-Tensorflow parameters where the initial learning rate
is set to 0.001 and is automatically adapted thereafter. We used a mini-batch size of 15
samples.

Then a classifier model was trained with early stopping: the best performing model
(i.e., the one with the lowest validation loss) was retained in a checkpoint file. At the
end of 10-fold cross-validation, we expected 10 models having some degree of diversity
due to the cross-validation permutations.

3.5.3. Class imbalance Because arousals are relatively infrequent in the long sleep
recordings, there is a considerable class imbalance that can present challenges to learning
convergence, in terms of both iterations and accuracy. For this reason we weighted the
loss function more heavily in arousal regions, experimenting with values close to the
relative incidence of arousals (14) and with no emphasis (i.e., loss weight=1). We fixed
the loss weighting to 1 for all other classes.

3.5.4. Auxiliary targets We hypothesized that the sleep-stage and arousal type labels
marked by the experts might contain information useful to training in addition to the
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primary target (arousal state). We experimented using either the five-class sleep-stage
labels or the thirteen-class arousal type labels as auxiliary targets during training. This
was done by adding a dense-softmax layer parallel to that of the primary target after
the BiLSTM layer. We used the sleep stage onsets and terminations to create a target
vector at the decision sampling frequency. The arousal type stage target vector was
created similarly. However, we found that these intervals overlapped in about 10% of
the recordings; to resolve this conflict simply, we gave priority to intervals appearing
later in time (overwriting when necessary). The auxilary targets were encoded as one-
hot vectors of length six and fourteen for sleep-stage and arousal type, respectively. The
extra state represented undefined status in each case. For sleep stage we experimented
with equal (1:1) and deemphasized (1:0.25) contributions to the overall loss function
relative to the primary target. For arousal type we used equal contribution.

3.5.5. Ensemble classifier Ensemble methods combine several trained classifiers into
one predictive model with the objective to decrease variance (bagging), bias (boosting),
or improve predictions (stacking) (Witten et al. 2016, Ju et al. 2018). In our approach,
we built our ensemble classifier by using the unweighted averaging strategy to fuse the
decision of ten base deep classifiers. This rule chooses the class with the highest average
probability over all modelsMi, i ∈ {1, . . . , n}, where n in this context is the number of
cross-validation folds.

3.6. Evaluation

The proposed classifier was evaluated with two metrics that give complementary insights
into the classification performance: AUPRC and area under the receiver operating
characteristic (AUROC). We relied on the Python code provided by the 2018 Challenge
to compute these metrics, which calculates histograms to estimate scaled versions
of the two conditional prediction probabilities Prob[arousal|(truth = arousal)] and
Prob[arousal|(truth = non-arousal)). These histograms are used to determine the
false-positive rates, recall and precision values for each probability threshold, taken
from corresponding histogram bins; we used the default setting of 1000 histogram bins.
These allow us to generate the ROC and PR curves and estimate their areas.

For performance reasons, we compared targets and predictions at the 0.5Hz decision
sampling rate in all our experiments. For final evaluation on the Challenge server, we
up-sampled the predictions by sample and hold to the expected 200Hz rate.

As a baseline comparison of ST processing with conventional spectral methods, we
also performed an experiment using power spectral density (PSD) analysis. This was
done by first detrending the 200 Hz signals with a FIR high-pass filter having a cutoff
frequency of 1 Hz. Then we performed sliding-window analysis with a window size of
512 samples that was advanced by the same amount, thus conforming to the decision
sampling rate of the ST analysis. For each window we created a model using the matlab
function pcov using an FFT length of 64, generating approximately the same number
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of coefficients (33) as the ST36 processing, A fixed AR model order of 20 was chosen
empirically. The frequency resolution provided by the PSD coefficients was therefore
200 Hz / 64 = 3.1 Hz. For the very slow-changing SaO2 signal, the above processing
was inappropriate, and the coefficient was set to the window average. We performed the
normalization as before using the log(x + 1) transform. Finally, we trained a detector
in cross-validation using a three-layer BiLSTM for fair comparison.

Differences between experiment results were often subtle (within a few percent mean
AUPRC and AUROC), so we needed a principled way to compare two experiments. We
did this by performing a 2-sided t-test of test AUPRC over all 10 folds to test the null
hypothesis that the mean AUPRCs were equal.

4. Results

4.1. Scattering

Figure 3(a) shows the normalized ST coefficients for all channels for a typical recording.
Figure 3(b) is a magnified view that includes a region of arousals. It is apparent from
these overall and magnified views that the onset and termination of the arousals appear
as higher ST values (i.e., towards red on the color maps). It is also clear that there
are numerous elevated values where there are no target arousals. These clearly appear
itermittently in non-scored (noisy) regions (e.g., between sample 3.4×106 and 4.4×106)
but they may also indicate sensitivity to non-target arousals. Finally it is apparent from
Figure 3(b) that the time support of the second-order coefficients (near the bottom of
each channel map) is wider than those of the first-order coefficients (at the top of the
map), and especially with decreasing frequency band (lower in the map).

4.2. Depthwise-separable convolution

Figure 4 and Figure 5 show the DSC depthwise and pointwise filter-weight maps,
respectively, for an example fold of the cross-validation. They are presented as 11-by-
11 lower-triangular images with first-order paths along the diagonal and second-order
paths beneath; Table 2 gives the Morlet filter octave(s) associated with each path in the
matrix.

For the depthwise convolution, all channels have non-zero weights for at least
some paths; however, the four channels ABD, CHEST, AIRFLOW and SaO2 seem
to dominate over the 7 EEG channels, Chin1-2 and ECG: their weights tends to more
towards the red (positive) and blue (negative) extremes of the colormap. While these
four channels also had non-zero weights in the higher octaves (towards the upper left),
their lower octave weights (toward the lower right) were especially strong.

AIRFLOW, for example had strong first-order 0.097 Hz (intense red) and 0.39 Hz
(intense blue) weights as well as strong second-order weights for the 12.5/25 Hz (red)
and 1.56/25 Hz (red) and 0.781/3.125 Hz (blue) octave pairs. SaO2 had higher-octave
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100 0 First Order
50 11 1 Secord Order
25 12 13 2
12.5 14 15 16 3
6.25 17 18 19 20 4
3.125 21 22 23 24 25 5
1.56 26 27 28 29 30 31 6
0.781 32 33 34 35 36 37 38 7
0.390 39 40 41 42 43 44 45 46 8
0.195 47 48 49 50 51 52 53 54 55 9
0.097 56 57 58 59 60 61 62 63 64 65 10
Octave (Hz) 100 50 25 12.5 6.25 3.125 1.56 0.781 0.390 0.195 0.097

Table 2. Position of each scattering path i ∈ {0, 1, . . . , (P − 1) = 65} in a matrix
of Morlet filter octaves (in red). The first order paths appear along the diagonal (in
mauve) while the second-order paths appear below the diagonal (in blue).

contributions in addition to its strong lower octave contributions, possibly reflecting
sensitivity to sensor disturbance.

Weights were diversely spread across the 7 EEG channels. In particular, lower
octaves had significant weights over several electrodes: the first-order 0.197 Hz octave
was present in E1-M2, and the second order 0.097/0.197 octave pair was present for
F3-M2 and F4-M1 and to a lesser degree, C3-M2. ECG was especially strong for the
0.39/6.25 Hz (red) and 0.781/25 Hz (blue) octave pairs. For the Chin1-2 EMG signal,
the first-order 25 Hz (red) and second order 0.39/50 Hz octave pair (blue) stood out.

For brevity we show only 12 of the P=66 mixtures of the pointwise filter in Figure 5.
These maps are more difficult to interpret, with strong peaks (red) and valleys (blue)
occuring in many of the first and second order paths, and with much diversity between
mixes.

4.3. Training and Classification

Table 4 shows the results of our classifier training experimentation. The models were
compared incrementally to assess the impact of the introduction of each change. We used
a slightly modified version of our 2018 Challenge entry for ST36-UniLSTM (Exp. 1).
It consisted of second-order ST cofficients spanning J = 8 octaves (P=36 ST paths per
channel), three unidirectional LSTM layers, each followed by a BN layer, and a dense-
softmax layer. Unlike the Challenge entry, however, we used all three arousal targets
{A, NA, NS} rather than just two {A, NA} to allow more noise-related expressiveness in
the model. The mean number of training epochs at convergence was 140, with training
time on the order of 16 hrs per fold. The mean± standard deviation of the fold AUPRC
was 0.2913±0.0398.

Next, in Exp. 2 we replaced the LSTM units with BiLSTM. This time the AUPRC
was 0.3753±0.0398, an increase of 28.8% over baseline (p=0.0002). Training time was
similar to baseline, but the mean epochs at minimum loss reduced to 112.6.
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The baseline PSD-BiLSTM detector of Exp. 3 was inferior to the equivalent ST36-
BiLSTM detector of Exp. 2, with AUPRC decreasing from 0.3753 to 0.2839 (p<0.0001).

We then augmented the ST analysis to capture the ‘slow-frequency’ band (0.1Hz),
increasing P to 66 (Exp. 4). The AUPRC was 0.4074±0.0502, an increase of 8.5% over
the Exp. 2 (p=0.0141). The rate of training convergence was similar.

Then a DSC layer with N = P = 66 and linear activation was inserted between
the ST and first BiLSTM layers. The change in AUPRC was insignificant (Exp. 5,
p=0.9078); however, when the DSC activation was changed to a ReLU unit and a BN
layer was added to the input, the AUPRC increased to 0.4344±0.0369, an increase
of 6.6% (Exp. 6, p=0.0395). As well, addition of the DSC reduced training time
considerably in both cases; in the latter case, it reduced to a mean of 24 epochs at
minimum loss and 10 hrs per fold. The rationale for adding the initial BN layer was
that while normalization successfully transformed the ST coefficients to a quasi-normal
distribution, the mean was considerably offset (approximately in the range of 6-10).
Incorporating mean removal into the normalization step would have been the ideal
approach, but to avoid renormalizing the data before training, we used the BN layer to
accomplish the same task during training.

Removing the increased loss weighting on arousal regions by setting this value to
1 increased the AUPRC to 0.4547±0.0308, an increase of 4.7% (Exp. 7, p=0.0391).
Convergence was slightly longer, however, with mean epochs at minimum loss of 31.

As a further study in model ablation, we reduced the number of BiLSTM layers
from three to two. The AUPRC did not change significantly (Exp. 8, p=0.8121), but
convergence was slower, with the mean epoch at minimum loss increasing slightly to 42.
We retained this simpler model in subsequent experiments.

Finally, we added the auxiliary target of arousal type to the network architecture,
giving it equal weight in the loss function to the primary arousal target. This increased
AUPRC to 0.4675±0.0444, an increase of 2.4% (Exp. 9, p=0.0741). The mean epoch
at minimum loss increased to 50, likely due mostly to the additional calculation of
gradients for this 15-class, one-hot auxiliary target. Training and validation AUPRC
were 0.6092±0.0246 and 0.4608±0.0175, respectively. The test, training and validation
AUROCs were 0.9180±0.0066, 0.9500±0.0047 and 0.9230±0.0050, respectively.

We considered this to be our best architecture. We used the models generated from
10-fold cross-validation in our proposed ensemble. In a 2018 Challenge follow-up entry,
this ensemble scored 0.50 on the hidden test set.

Other experiments that did not significantly change performance included adding
third-order ST coefficients, inserting 20% dropout layers before or after the DSC layer
and using the sleep stages as auxiliary targets.

Figure 6 shows sample receiver operating characteristic (ROC) curves and precision-
recall (PR) curves using a single fold of our final architecture. Since our final classifier
model had relatively small variance (standard deviation of 0.0444) across the ten folds
of cross-validation, as shown in Table 4, we considered the ROC and PR curves of one
of these folds (fold 1) to be representative; we chose a decision probability threshold
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(p=0.17) based on an example criteria of maximum F1 (0.48) using the validation data
set. Applying this threshold to the test data resulted in a false-positive rate of 0.06, a
recall of 0.61 and a precision of 0.44. Figure 3 tabulates these performance measures on
the validation data as a function of probability threshold at 0.05 recall intervals.

5. Discussion

The results show an overall improvement of mean AUPRC in cross-validation from
0.2913 to 0.4675 compared to our 2018 Challenge entry. The ensemble amplified this
improvement to 0.50 when used on the independent data of the hidden test set.

The most important contributions to increased performance were, in decreasing
impact: the use of BiLSTM; the addition of the slow-frequency ST coefficients; the
combination of Input BN, DSC and ReLU; uniform weighting of loss function for all
targets; and addition of auxiliary target arousal type.

The importance of the BiLSTM indicates that future context is critical to the
arousal detection, and likely to the accurate delineation of arousal termination. The use
of a BiLSTM is well suited to PSG interpretation because it is typically satisfactory to
provide offline processing, after a night sleep study is complete, for example. BiLSTM
is less suitable in realtime, low-latency contexts.

In our 2018 Challenge entry we used 8-octave ST coefficients to capture frequencies
as low as 0.75Hz. We have demonstrated in this study that frequencies in the lower
0.1Hz slow-frequency band are discriminative for arousal detection. Definitions of the
lowest (delta) band in classical EEG investigation vary, with some defining it as 0.5Hz-
4Hz and others 1.0Hz-4Hz. But there is certainly EEG activity below that, labelled
the "slow-frequency" (0.1-1Hz) and "infra-slow" bands (0.01-0.1Hz). These bands have
been found to be correlated to "resting states" in studies with simultaneous acquisition
of EEG and MRI (Hiltunen et al. 2014). This is an interesting finding that may support
the slow-frequency band discrimination that we have observed. In a future study, it
would be interesting to explore the order-of-magnitude lower infra-slow band. The
ST-DSC-BiLSTM approach that we describe could be adapted to this purpose in a
straightforward way.

This study demonstrates that the ST is a powerful fixed-base transform for the
multimodal biomedical signals of PSG. Although the baseline PSD detector was not
tuned for performance, it was a helpful baseline implementation. The ST36-BiLSTM
detector, having an equivalent number of ST coefficients, clearly outperformed its
PSD33-BiLSTM equivalent. This is consistent with studies in (Bruna & Mallat 2013)
which indicated that for equivalent image classifiers, first-order ST coefficients alone
outperformed windowed Fourier transform coefficients as inputs, and addition of second-
order ST consistently performed even better over a range of noise level conditions.

In addition to contributing to improved performance, the DSC offered the
advantages of greater training efficiency and explicit consideration of the structure in
the data and the reduction of correlations related to this structure. This makes sense
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as nearby electrodes of the same modality (especially the 8 channels of EEG) are highly
correlated; this is addressed by the depthwise convolution. It also seems reasonable to
expect that the pointwise convolution reduces correlations between ST paths in close
frequency proximity within the same modality as well as between modalities.

The DSC weights thus provide key insights into which electrodes and paths are
most informative (and therefore discriminative). Both first- and second-order ST paths
were important in the DSC filters, as demonstrated both in the depthwise mixtures of
electrodes over the same path (Figure 4) and the pointwise mixtures of path information
(Figure 5)

The depthwise filter weights for the four-channel set ABD, CHEST, AIRFLOW
and SaO2 seem to dominate the other channels and therefore were important for arousal
discrimination. Their lower-octave contributions were especially strong, consistent with
Nino et al. (2013) who found evidence of apnea arousal activity in these four channels
in the 0.05 and 0.2 Hz frequency ranges. These phenomena may also be relevant to the
non-apnea arousals that concern this study.

The EEG channels weights were less strong (i.e., they had fainter colors in the
filter maps), but they were diversely spread across these 7 channels, likely reflecting
their varying spatial sensitivities to the energies of the dipole sources at each octave.
It is noteworthy that while the addition of the three octaves down to as low as the
slow-frequency band had the greatest impact on the four channel set ABD, CHEST,
AIRFLOW and SaO2, it did also increase the EEG information for these octaves
(confirming the original motivation for their addition). We also note that the ECG
peak response at 0.781 Hz closely corresponds the the spectral peak of the sinus rhythm
at approximately 1.0 Hz (Clifford et al. 2006). Finally, while higher EMG frequencies
were dominant, informative activity below the limit of 5 Hz reported in Viitasalo &
Komi (1977) was also apparent.

What is striking about the pointwise filter maps of Figure 5 is less about their
interpretability and more about their diversity, demonstrating their flexibility to learn
discriminating clusters of coexisting paths. Further hyperparameter tuning is required
to determine whether the N=66 paths are sufficient or excessive to adequately present
the transformed input signals to the subsequent sequence-learning layers.

The addition of the auxiliary arousal type (Exp. 7 in Table 4) increased the mean
test AUPRC by 2.4% compared to a model without it (Exp. 6) although it did so with
less significance (p=0.0741) than the other influential changes mentioned above. The
addition of these 13 arousal types may have influenced training in such a way as to
correctly distinguish some borderline arousal regions from background. It is interesting
to note that other more “neutral” changes with respect to mean AUPRC such as Exp.
4 and 7 had much higher p values (0.9078 and 0.8121, respectively). Given that this
architecture produced the highest mean test AUPRC, we used it in our final followup
phase submission.

In the early stages of our work, our training infrastucture was insufficient to train
on all the data. For that reason we performed smaller batches of training, for example
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p Recall FP Rate Prec F1
0.00 1.00 1.00 0.05 0.10
0.01 0.95 0.27 0.17 0.28
0.02 0.90 0.19 0.21 0.35
0.04 0.85 0.14 0.26 0.39
0.06 0.80 0.11 0.29 0.42
0.08 0.75 0.09 0.32 0.45
0.10 0.70 0.07 0.35 0.47
0.13 0.65 0.06 0.38 0.48
0.16 0.60 0.05 0.41 0.48
0.17 0.58 0.05 0.42 0.48
0.22 0.50 0.03 0.46 0.48
0.25 0.45 0.03 0.49 0.47
0.29 0.40 0.02 0.52 0.45
0.34 0.35 0.02 0.55 0.43
0.39 0.30 0.01 0.58 0.39
0.44 0.25 0.01 0.62 0.36
0.51 0.20 0.01 0.65 0.31
0.58 0.15 0.00 0.70 0.25
0.66 0.10 0.00 0.74 0.18
0.76 0.05 0.00 0.80 0.09

Table 3. Table of Performance measures vs. probability threshold for the validation
data. FP Rate refers to the false positive rate and Prec refers to the precision. Two
proposed thresholds are shown in bold.

with 200 recordings. Under these conditions, we found that augmenting the arousal loss
weight was essential to successful training. We showed in this work, where training of
the entire training set was possible, that our final model performed better without such
loss emphasis. This was an interesting result because it demonstrated that given enough
data, the ST-DSC-BiLSTM approach could train very successfully with the data ‘as-
is’, without resorting to heuristics such as loss weighting, subsampling or augmentation
to counteract class imbalance. Being able to process long time series continuously in
this way is critical to capturing long-term trends or sentinel events that are temporally
remote. Our success with PSG signals gives some confidence that this approach could
perform well without ad hoc adjustments in other time-series contexts.

To be clinically useful, it is necessary to choose some decision threshold to produce
a classifier instance, rather than the family of classifiers described by AUROC and
AUPROC. The curves of Figure 6 illustrate one representative selection. The maximum
F1 criterion for threshold selection considers recall (sensitivity) and precision (PPV) to
have equal value. But other criteria are possible, notably if, in our context of arousal
detection, there is tolerance for higher false positive rates to achieve greater sensitivity:
if the system is used to screen long records for a human to edit, for example. As
a plausible threshold selection for this scenario, Table 3 and Figure 6 indicate that
to achieve a recall of 0.90 requires a threshold of p=0.02; under these conditions an
estimated false positive rate of 0.19 and a precision of 0.21 would result.
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Exp. Change
Test

AUPRC %
change p-value

Mean Fold
Training

mean Std Epochs ∼Hrs
1 ST36-UniLSTM 0.2913 0.0398 - - 140.2 16
2 ST36-BiLSTM 0.3753 0.0398 +28.8 0.0002 112.6 16
3 PSD33-BiLSTM 0.2839 0.0187 -24.4 <0.0001 26.0 6
4 ST66(‘slow freq.’) 0.4074 0.0502 +8.5* 0.0141 104.9 16
5 DSC-linear 0.4089 0.0289 +0.4 0.9078 29.8 10
6 Input BN-DSC-ReLU 0.4344 0.0369 +6.6* 0.0395 23.9 10
7 No arousal loss weight 0.4547 0.0308 +4.7 0.0391 30.8 10
8 (BiLSTM-BN)2 0.4564 0.0359 +0.4 0.8121 42.1 10
9 Auxiliary target arousal type 0.4675 0.0444 +2.4 0.0741 50.2 10

Table 4. Relative impact of cumulative architectural or training changes in cross-
validation experiments. Mean AUPRC comparisons are made with the previous
experiment except where indicated with asterisks: Exp. 4 was compared to 2 and
Exp. 6 was compared to 4. Exp. 9 (in bold) was our best model submitted for
hidden-test results in the followup phase.

6. Conclusions

This study confirms that the proposed representation learning layer, which consists
of scattering transforms of each channel and depthwise-separable convolution as an
interface to the LSTM-based sequential learning, had a substantial impact on the
performance of the pipeline for the detection of arousal regions in PSG recordings.
Experiments showed that capturing lower-frequency information, down to 0.1 Hz, and
using a stack of BiLSTM layers yielded a AUPRC of 0.50, a substantial increase of 0.14
over our previous approach submitted during the official phase. Future work will be
directed at applying this approach to the infra-slow band (down to 0.01 Hz), an order of
magnitude lower in frequency than the work of this paper yet a straightforward extension
of our approach. This has the potential to improve the low-frequency representation for
all the (non-EMG) PSG signals and achieve increased discrimination.

In the follow-up phase of the 2018 Physionet/CinC Challenge the proposed
architecture achieved a state-of-the-art AUPRC of 0.50 on the hidden test data, tied for
the second-highest official result overall.
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Figure 3. (a) Typical scattering transforms and target for entire recording tr03-0005.
For each channel, there are 11 1st-order and 55 2nd-order coefficients (concatenated
vertically). Normalized values range from blue (lowest) to red (highest). Target
values of -1, 0 and 1 indicate not-scored, non-arousals and arousals, respectively. (b)
Magnified from the first 30 minutes of (a). The time axes are shown in hour:minute
format. Clusters of high ST values are apparent in the vicinity of target arousals.
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Figure 4. Depthwise filter F for fold 1 with octave-pair ST path maps for each
channel. The paths are arranged as in Table 2.
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Figure 5. Pointwise filter G of fold 1 for the first 12 of the N=66 mixtures of first-
order and second-order (octave-pair) ST paths. The paths are arranged as in Table 2.
Note that the colormap scale here differs from Figure 4.
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Figure 6. Performance based on threshold selection for fold 1 (top) Validation data
F1 vs. prob. threshold: the selected threshold of p = 0.17 occurs at maximum
F1. (middle) Test data PRC (bottom) Test data ROC. The points in red indicate
performance at selected thresholds.
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