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ABSTRACT

This article addresses the automatic detection of vocal, nocturnally
migrating birds from a network of acoustic sensors. Thus far, owing
to the lack of annotated continuous recordings, existing methods had
been benchmarked in a binary classification setting (presence vs. ab-
sence). Instead, with the aim of comparing them in event detection,
we release BirdVox-full-night, a dataset of 62 hours of audio com-
prising 35402 flight calls of nocturnally migrating birds, as recorded
from 6 sensors. We find a large performance gap between energy-
based detection functions and data-driven machine listening. The
best model is a deep convolutional neural network trained with data
augmentation. We correlate recall with the density of flight calls over
time and frequency and identify the main causes of false alarm.

Index Terms— Acoustic signal detection, audio databases,
ecosystems, multi-layer neural network, supervised learning.

1. INTRODUCTION

Migratory birds face an increasing number of threats, for example
from rapidly changing climate, habitat loss, and human alteration of
the environment [1, 2]. In this context, assessing the spatial and tem-
poral distributions of bird populations represents a critical need for
creating appropriate conservation plans. Yet, most birds migrate at
night [3, 4], which severely limits the efficacy of most existing mon-
itoring methods for assessing their movements, e.g. diurnal citizen
scientist observations of eBird [5]. A potential solution for monitor-
ing nocturnally migrating birds is to deploy a network of low-cost
acoustic sensors in desired study areas to record vocalizations of
birds in sustained nocturnal migratory flights, known as flight calls
[6, 7]. Yet, the processing and analysis of audio data to extract flight
calls is a time-consuming and inefficient process, requiring costly
efforts by a small number of experts with experience in identifying
flight calls [8]. If bioacoustic analysis could be made scalable, au-
tomating the detection of flight calls in audio recordings, achieving
the potential for automated monitoring would be possible [9]. Such
methodology would represent a sea change in the monitoring of noc-
turnal movements of birds [10].

The lack of available datasets hinders the development of full-
fledged systems for species-agnostic avian flight call detection. On
one hand, energy-based detection functions and template matching
algorithms have mostly been evaluated on near-field recordings in
the presence of a single species [11, 12]. On the other, deep learn-
ing systems have recently achieved state-of-the-art results in species
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Fig. 1. Histogram of time spans between adjacent flight calls in the
BirdVox-full-nightdataset. The shaded area corresponds to the in-
terquartile range across 6 full night recordings.

classification [13] and activity detection [10, 14], but their perfor-
mance in event detection remains unknown. In addition, existing
datasets are inadequate for context-adaptive algorithms, as they con-
sist of intermittent recordings.

In this article, we present BirdVox-full-night, a collection of 6
full night recordings comprising 35k nocturnal flight calls annotated
in time and frequency. We compare 4 methods from the existing
literature, including a re implementation of the “Old Bird” software,
widely used among practitioners. We conduct a post hoc analysis
of detection recall according to time (dusk, night, and dawn) and
acoustic frequency.

We invite the reader to visit the companion website1 of this pa-
per, where we release the BirdVox-full-nightdataset under Creative
Commons Attribution International (CC BY 4.0) license; the Python
source code to reproduce experiments and figures under MIT license;
and a pre-trained deep learning model under MIT license.

2. DATASET

In this section, we provide an overview of existing datasets for the
acoustic detection of bird vocalizations, explain the need for a new
dataset, and describe the specificities of BirdVox-full-night.

First, the CLO-WTSP and CLO-SWTH [10] datasets were col-
lected by running a low-precision detector of flight calls whose false

1Companion website: https://wp.nyu.edu/birdvox/birdvox-full-night



alarms were manually labeled as negative examples, yielding a task
of binary classification of clips. Although this approach requires
less human effort than inspecting continuous recordings, the low-
precision detector influences the sampling of the clips, which biases
the training of binary classifiers towards a restrained set of confound-
ing factors. Furthermore, since the low-precision detector has an un-
known recall, the accuracies of binary classifiers do not reflect their
usability in continuous monitoring. Secondly, the Bird-DB datasets
[15] consist of single-species continuous recordings of bird vocaliza-
tions, not necessarily flight calls, annotated by experts at the phrase
level. These datasets do not have an official split between training
set, validation set, and test set, which hinders the reproducibility of
machine learning research. Thirdly, the freefield1010 dataset [16]
consists of 10-second soundscapes, labeled at the clip level with
species-agnostic presence of bird vocalizations, and gathered into
10 folds for cross-validation.

With BirdVox-full-night, we provide a dataset of 6 far-field,
full night recordings, containing 35k flight calls from 25 species
of passerines, individually annotated in time and frequency by an
expert, along with an official evaluation methodology.

During the fall migration season of 2015, we deployed 10
ROBIN autonomous recording units around Ithaca, NY, USA [10].
This resulted in 966 recordings (6600 hours), among which 548 are
at least 8 hours long. For 6 full night recordings, corresponding
to different recording units active at the same date (September 23rd

and 24th, under mild weather conditions), one of us (AF) pinpointed
the center of every flight call in the time-frequency domain. Bird
chatter and non-passerine utterances (e.g. speech, geese, dogs) were
ignored. In total, the annotator pinpointed 35402 flight calls. This
annotation campaign took 102 hours in total.

Figure 1 shows the distribution of time spans between adjacent
flight calls in BirdVox-full-night. We find that 80% of these time
spans are between 100 ms and 10 s. With the aim of deriving abun-
dance estimates from the output of the benchmarked systems, we
formulate the task as sound event detection instead of coarse-scale
binary classification of bird presence.

3. METHODS

In this section, we present four methods for avian flight call detec-
tion: a domain-specific detector (“Old Bird”); spectral flux; a shal-
low learning pipeline; and a deep convolutional neural network.

3.1. Energy-based detectors: “Old Bird” and spectral flux

We evaluate the “Old Bird” system of [17], which combines a de-
tector of warblers and sparrows, Tseep; with a detector of thrushes,
Thrush. Tseep (resp. Thrush) applies a real-valued filter of passband
6− 10 kHz (resp. 2.8− 5 kHz) to the waveform, followed by squar-
ing, low-pass filtering at 11 Hz (resp. 5.5 Hz), logarithmic transfor-
mation, and differentiation at the scale of 20 ms. The Python re-
implementation of Old Bird, named Vesper [18], runs 20 times faster
than real time.

This results in a detection function on which clips are selected
as flight calls if they meet the following criteria: the detection func-
tion is above a fixed threshold τ at the onset; the detection function
is below 1/τ at the offset; the time lag between onset and offset is
between 100 ms and 400 ms. While the author recommends an ad
hoc value for τ , we apply 100 different values to match the evalua-
tion setting of machine learning algorithms, and select τ maximizing
F1-scoreon a hold-out validation set. As a post-processing step, we
follow the original implementation by applying a “clip suppressor”

heuristic, which discards any sequence of 15 or more (resp. 10 or
more) consecutive clips selected by Tseep (resp. Thrush) within a
time span of 20 seconds or less.

We also evaluate spectral flux [19], a common method in music
onset detection which comprises the same processing steps as Tseep
and Thrush, yet with a sum of responses from 40 mel-frequency
bands instead of domain-specific passbands.

3.2. Spherical k-means and support vector machines

We evaluate the “shallow learning” pipeline of [13], originally de-
signed for species classification [20]. This pipeline consists of a
time-frequency representation, here log-mel-spectrogram; an unsu-
pervised feature learning stage, here principal component analysis
(PCA) and spherical k-means (SKM); and a supervised classifica-
tion stage, here a support vector machine (SVM).

The log-mel-spectrogram consists of 40 bands between 2 kHz
and 11.025 kHz, and is computed with the librosa library [21] with
a Hann window of duration 12 ms (256 samples at 22.050 kHz)
and hop length of 1.5 ms (32 samples). We extract non-overlapping
patches of width 46 ms (32 frames) in the time-frequency domain,
leading to 32 × 40 = 1280 features.

Principal component analysis (PCA) projects patches into a
lower-dimensional space keeping 99% of the variance in the train-
ing set, and standardizes each dimension to null mean and unit
variance.

In the space of standardized principal components, the spheri-
cal k-means (SKM) algorithm learns k = 256 clusters maximizing
intra-cluster cosine similarity on the training set [22]. We scale the
centroids of these clusters to unit L2 norm and gather them into a
family of k vectors onto which PCA-whitened features are projected
at prediction time.

We train a support vector machine (SVM) with radial basis func-
tion (RBF) kernel to discriminate positive from negative clips in the
space of 256 standardized SKM features. Out of the 5M clips of du-
ration 150 ms in BirdVox-full-night, only 35k (0.8%) are positive.
In order to compensate for this class imbalance, we restrict the num-
ber of negative clips to a subset of 35k clips. To select this subset,
we start by training a shallow learning model (PCA-SKM-SVM) on
an external dataset of clips collected in 2012 and 2013 in various
locations of North America, not including Ithaca. We retained as
negative clips the false alarms of this model predicted with greatest
confidence. As a result, the 35k flight calls for all 6 recording units
are supplemented with 35k false alarms, summing up to a balanced
dataset of 70k clips, named BirdVox-70k. A grid search on BirdVox-
70k maximizing validation accuracy selects the parameters C and γ
of the model. The optimal values of these parameters vary across
folds and trials; typical values are C = 1 and γ = 5 · 10−3.

Platt scaling transforms the output of the SVM into probabilistic
estimates of flight call activity over clips of duration 150 ms with a
hop size of 50 ms. We interpret this sequence of probabilities as a
detection function. To retrieve the temporal locations of flight calls,
we select peaks of the detection function above a threshold τ under
the constraint that they must be at least ∆t = 150 ms apart from
each other. Both the threshold τ and the time lag ∆t are optimized
by grid search on the validation set. Prediction is 8 times faster than
real time.

3.3. Deep convolutional network

We evaluate the deep convolutional neural network (CNN) of [13],
originally designed for species classification. The network consists



Fig. 2. Test accuracies on binary classification, averaged across
folds. Each box contains 5 independent trials for each model.

of 3 convolutional layers and 2 dense layers and has 677 k param-
eters in total. The input features are a log-mel-spectrogram with
identical characteristics as the one used in the shallow learning algo-
rithm, except that it has 128 bands instead of 40. In a preliminary
experiment, we tried replacing the log-mel-spectrogram by a rep-
resentation encompassing spectrotemporal modulations, namely the
time-frequency scattering transform [23, 24], but did not succeed in
consistently outperforming the baseline.

The training procedure is slightly modified with respect to [13].
First, because the last layer has a single output and a sigmoid nonlin-
earity, the loss function is binary cross-entropy instead of categorical
cross-entropy. Secondly, we use the initialization method of He [25]
instead of Glorot [26] for layers followed by a rectified linear unit.
Thirdly, we use the Adam optimizer [27] instead of a stochastic gra-
dient descent. Fourthly, we do not apply dropout, as we found that
it consistently prevented the model to train. We use Keras [28] to
train the convolutional neural network and the Pescador library [29]
to stream data. Training took five hours per fold and trial on a single
graphics processing unit (GPU). We interpret the output of the last
layer as a detection function. Again, we select peaks above a fixed
threshold τ under the constraint that they must be at least 150 ms
apart from each other. Prediction time is on par with real time.

4. RESULTS

In this section, we report results for two tasks: binary classifica-
tion on a balanced dataset of 70k clips and event detection on 6 full
night recordings. In both cases, we split the data into 6 folds, each
corresponding to a different recording unit, and run 6-fold cross-
validation, with 3 folds for training, 2 for validation, and 1 for test-
ing. To account for statistical fluctuations, we train 5 independent
trials for each fold, with randomized initialization and shuffling of
training data.

In binary classification, we measure global accuracy by sum-
ming the number of correctly classified clips across folds and divid-
ing the sum by the total number of clips, that is, 70804. We find
that the CNN slightly outperforms the shallow learning system, with
90.48% ± 1.5 and 87.77% ± 0.4 respectively, but the difference is
not statistically significant (p > 5 · 10−3 after independent t-test
with n = 5). This is in accordance with the CLO-43SD dataset for
classification of flight calls into 43 species, in which the two systems
perform comparably [13].

Data augmentation has been successfully employed in species

Fig. 3. Precision-recall curves on detection, averaged across folds.
The shaded area corresponds to the interquartile precision range
across 5 independent trials.

classification [13] and activity detection [30] to reduce the overfit-
ting of deep neural networks. We use the muda software [31] to
deform the audio clips from the training set in 20 different ways: 12
additions of background noise (4 from each unit in the training set),
4 pitch transpositions, and 4 time stretchings. The architecture of
the network remains the same, but the number of epochs is doubled
to account for a slower convergence rate. Data augmentation brings
the accuracy of the CNN to 94.85% ± 0.8, an improvement which
is statistically significant across trials (p < 10−3 after independent
t-test with n = 5). We do not report the accuracy of the shallow
learning model on the augmented dataset because training an SVM
on 700k samples is intractable in batch mode. Figure 2 summarizes
binary classification results.

Once trained and validated, all systems are compared on a task
of event detection over full night recordings. To match detected
events with annotated events within a tolerance range of 500 ms,
we use the fast implementation of maximum bipartite graph match-
ing from the mir eval library [32]. Varying the threshold τ allows
to adjust the number of detected events, and derive true positives,
false positives, and false negatives in each fold. We sum these num-
bers across folds before computing global metrics: precision, recall,
and F1-score. Figure 3 compares the precision of all systems as a
function of their recall.

After validating the threshold τ , the Old Bird detection function
and spectral flux have respective F1-scores of 8.0% and 14.6% on
average. Even with a high value of τ , yielding few or no true posi-
tives, many false alarms remain. Upon inspection, these false alarms
correspond to audio artifacts (“pops”) distant by exactly 30 seconds,
due by the recording hardware itself. The increase in recall caused
by disabling the clip suppressor in Old Bird is compensated by a
decrease in precision, resulting in an F1-score almost unchanged.
Surprisingly, spectral flux outperforms the Old Bird system, which
suggests that inducing hard constraints on clip durations might be
detrimental.



Fig. 4. Top: test recall of the CNN model, trained with data augmen-
tation, as a function of center frequency of the flight call. The shaded
area corresponds to the interquartile range across 5 independent tri-
als. Bottom: density of flight calls in the training set as a function of
their center frequency. The shaded area corresponds to the extremal
range across 3 recordings.

Without data augmentation, the shallow and deep learning mod-
els have respective F1-scores of 35.8% and 54.3%. Data augmen-
tation significantly improves the F1-score of the CNN up to 62.3%
(p < 5 · 10−6 after independent t-test with n = 5).

Because BirdVox-full-night is annotated in frequency, we can
perform a post hoc analysis of true positives and false negatives ac-
cording to the center frequency of the flight call to be retrieved. In
Figure 4, we cluster flight calls over bands of width 600 Hz and mea-
sure the recall of the detector in each cluster. We observe a strong
positive correlation between the median recall across trials and the
logarithm of the density of flight calls in the training set (Pearson’s
R = 0.89, p < 2 · 10−5).

Furthermore, because BirdVox-full-night consists of full night
recordings, we can also cluster flight calls by local time (Figure 5).
Again, at a scale of 30 minutes, we observe a strong positive corre-
lation between the median test F1-score across trials and species and
the logarithm of the density of flight calls in the training set (Pear-
son’s R = 0.89, p < 5 · 10−16).

5. CONCLUSION

The flight calls of migratory passerines contain valuable information
for conservation science. BirdVox-full-night is the first dataset of
full night recordings in which flight calls are annotated in time and
frequency. As such, it provides a challenging benchmark for binary
classification and event detection. Whereas energy-based detection

Fig. 5. Top: test recall of the CNN model, trained with data aug-
mentation, as a function of time. The shaded areas corresponds to
the interquartile range across 5 independent trials. Bottom: density
of flight calls in the training set as a function of time.

functions, such as the “Old Bird” domain-specific system, are not
robust to sonic artifacts, supervised learning systems generalize rel-
atively well across recording locations after being trained as binary
classifiers on a balanced subset of clips. In our companion web-
site, we publish the weights of a deep convolutional network trained
with data augmentation on the whole dataset. The state of the art on
BirdVox-full-nightis 95% binary accuracy and 63% detection F1-
score, under a leave-one-sensor-out evaluation procedure.

Post hoc analysis highlights the biases in the state of the art.
Because the traditional training procedure for supervised learning
assigns the same weight to each sample, rare flight calls (e.g. at dusk
or at non-typical frequencies) are less likely to be retrieved. Con-
versely, BirdVox-full-night offers a test bed to mitigate this prob-
lem. Indeed, since it consists of continuous recordings and is folded
by sensor locations, it aims at fostering research in context-adaptive
machine listening, with topics including noise reduction, recurrent
models, abundance priors, weighted sampling, and transfer learning.
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