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ABSTRACT

We introduce a new multidimensional representation, named
eigenprogression transform, that characterizes some essen-
tial patterns of Western tonal harmony while being equiv-
ariant to time shifts and pitch transpositions. This rep-
resentation is deep, multiscale, and convolutional in the
piano-roll domain, yet incurs no prior training, and is thus
suited to both supervised and unsupervised MIR tasks. The
eigenprogression transform combines ideas from the spi-
ral scattering transform, spectral graph theory, and wavelet
shrinkage denoising. We report state-of-the-art results on a
task of supervised composer recognition (Haydn vs. Mozart)
from polyphonic music pieces in MIDI format.

1. EIGENTRIADS

Let z[t, p] € My p(R) the piano-roll matrix of a musical
piece, either obtained by parsing symbolic data or by ex-
tracting a melody salience representation from audio [2].
The constant T (resp. P) is typically equal to 2'° (resp.
27). Within the framework of twelve-tone equal tempera-
ment, we define the major and minor triads as the tuples
7y = (0,4,7) and Zy = (0, 3, 7). For each quality ¢ € Z,
and frequency § € Zs, let
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where 6[p — Z,[n]] is the Kronecker delta symbol, equal to
one if p = Z,[n] and zero otherwise. Let G, the induced
subgraph of Z,,, where Z, is understood as a set of vertices
in Zp. Observe that {p — Q/J%rf;d} 5 consists of the eigen-
functions of the unnormalized Laplacian matrix of G:
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As a result, we propose to name eigentriads the complex-
valued signals 1/)21‘&(;1 in pitch space. We construct a mul-
tiresolution convolutional operator in the piano-roll domain
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between the aforementioned eigentriads and a family of
temporal Gabor wavelets
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P, [t] = a1 exp < ) exp(ia &t) 3)
fort € [0;T]. Weset{ = 2%, 0 = 0.1, ¢ = 27, and
log, a1 € [0;log, T. We define the eigentriad transform
of x as the rank-five tensor resulting from the complex
modulus of all convolutions between & and multivariable
wavelets W, [t pl:
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where the difference in ¢ (resp. in p) is computed in Zy
(resp. in Zp). By averaging the tensor U (x) over the di-
mensions of time ¢, pitch p, and triad quality ¢, one obtains
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The operator & — Si(x) characterizes the relative amounts
of ascending triads (8, = 1), descending triads (8; = —1),
and perfect chords (5, = 0) at various temporal scales a;
in the piece x, while keeping a relatively low dimensional-
ity, equal to 3log, T'. The averaging along variables ¢ and
p involved in Equation 5 guarantees that S is invariant to
the action of any temporal shift operator Ta; : x[t, p] —
x[t + At,p|, as well as any pitch transposition operator
Tap : 2[t,p] — x[t,p + Ap]:

VAt € Z'[r,VAp S ZP, Sl(TrApOTAt OSC) = Sl(.’E) (6)

Furthermore, the averaging across triad qualities g implies
approximate invariance to tonality, in the sense that replac-
ing major triads by minor triads and vice versa in & (insofar
as this is feasible in the signal « at hand) does not affect
the matrix S;(x). From the standpoint of serialist music
theory [1], the presence of signed eigentriad frequencies
1 = =£1 ensures that S; is not invariant to retrogradation
R : z[t,p| — x[—t,p], i.e. time reversal:

(Rox)#x = S1(Rox) # Si(x). @)

However, the averaging across triad qualities g causes S;
to be invariant to inversion I : x[t,p] — x[t,—p], ie
reversal of the pitch axis:



The above property hinders the accurate modeling of chord
progressions in the context of Western tonal music. Indeed,
S, fails to distinguish a perfect major cadence (C™ —
Fma)) from a plagal minor cadence (F™" — C™"), as one
proceeds from the other by involution with I. More gener-
ally, the eigentriad transform may suffice for extracting the
quality of isolated chords (e.g. major vs. minor), but lacks
longer-term context of harmonic tension and release so as
to infer the tonal functions of such chords (e.g. tonic vs.
dominant).

2. EIGENPROGRESSIONS

In this section, we introduce a second multidimensional
feature Us, built on top of U; and named eigenprogres-
sion transform, that aims at integrating harmonic context
in Western tonal music while still respecting the aforemen-
tioned requirements of invariance to global temporal shifts
T a¢ and pitch transpositions 7 a,. We begin by defining
the Tonnetz as an undirected graph over the 24 vertices of
triads (p,q) € Z12 X Zo2. Let J1 = 4 (resp. Jop = 3) the
number of semitones in a major (resp. minor) third. The
unnormalized Laplacian tensor of the Tonnetz is

LTonnetz
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We define eigenvalues ) of the Laplacian tensor, and corre-
sponding eigenvectors v, as the solutions of the following
equation:

p,q.¢,p] =
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The number of distinct eigenvalues \; ...\ satisfying
Equation 10 is equal to K, and their associated eigensub-
spaces form a direct sum: V1 & ... & Vg = Mpy(R).
For values of k£ such that dimV, = 1, we define the
k™ eigenprogressions as 4, ""*%[p, q] = vi[p, q], where
vk € Vi and ||vg||2 = 1. In contrast, for values of k such
tat dim V, = 2, we arbitrarily select two vectors vi¢ and
vim satisfying vie L vim, |[vEe|ly = |[vi®|, = 1, and

span({vFe, vim}) = V,; and define eigenprogressions as

wg;mnctz [p7 q] _ v]]lfe[p’ q] + lv]hn[p q] (11)

We define multivariable eigenprogression wavelets as

— ’l,[) [ ]¢Tonnet4[p ]d’iglral [p] ,
(12)

is a temporal Gabor wavelet of frequency and

(s Baya) [0 P2 ]

where .,
wbp"al is a Gabor wavelet on the Shepard pitch spiral [4]:

P35 [p] = 72 exp ( 2L %J ) exp (i€ [%J) :
13)

wherein 75 € {0,+1}. We define the eigenprogression
transform of x as the following rank-eight tensor:

U2($)[t7p7 q, 01, 617 042,52/72] =
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At first sight, Equation 10 suffers from an identifiability
problem. Indeed, a different choice of basis for V, would
incur a phase shift and/or a complex conjugation of the
convolutional response U (x) e PO Yet, because
the eigenprogression transform consists of Gabor wavelets
(i.e. with a symmetric amplitude profile) and is followed
by a complex modulus operator, such differences in phase
and/or spin are eventually canceled and thus have no ef-
fect on the outcome of the transform Consequently, we
pick one arbitrary pair (v]}fe, vk ™) for each subspace Vi,

without loss of generality.

3. EXPERIMENTS

We evaluate the eigenprogression transform on a task of
supervised composer recognition between Haydn and Mozart
string quartets [7]. After averaging along time ¢ and pitch
p, we standardize each feature in the rank-five tensor

So(x)[0u, B, az, Ba, Y] =
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to null mean and unit variance. Then, we train a linear
support vector machine with C' = 10%, and report results
with leave-one-out cross-validation. The ablation study in
Table 1 confirm that all the five scattering variables (a1,
51, Y1, a2, B2, 2) are beneficial to both sparsity and ac-
curacy. However, because the dataset string quartet move-
ments contains only 107 examples in total, the full eigen-
progression transform (in dimension 8385) is exposed to
statistical overfitting. For the sake of simplicity, rather than
running a feature selection algorithm, we apply wavelet
shrinkage denoising, i.e. we keep 1119 coefficients of largest
energy on average, summing up to 50% of the total en-
ergy. This adaptive procedure has been proven to be near-
optimal in the context of wavelet bases [3]. It leads to a
state-of-the-art classification accuracy of 82.2%.

4. CONCLUSION

We have diagonalized the Laplacian of the Tonnetz graph
and derived a multivariable scattering transform, named
eigenprogression transform, that captures some local har-
monic context in Western tonal music. Although the nu-
merical example we gave was a task of composer recog-
nition, the eigenprogression transform could, in principle,
addresss other MIR tasks in the future, including cover
song retrieval, key estimation, and structure analysis.



dim. ¢1/¢y acc. (%)

[7] 79.4
(8] 80.4
ay 8 2.6 67.3
ap B 24 4.6 71.0
a1 61 (65) 129 6.1 72.0
o P oaz B 1677 170 76.7
a; P11 az P2 2 8385 424 77.6
a; B1 as Ba e 1119 223 82.2

Table 1. Comparison between the eigenprogression trans-
form and other transforms of smaller tensor rank, in terms
of dimensionality, sparsity (¢1 /¢ ratio), and accuracy on a
supervised task of composer recognition.
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