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ABSTRACT

We introduce a new multidimensional representation, named
eigenprogression transform, that characterizes some essen-
tial patterns of Western tonal harmony while being equiv-
ariant to time shifts and pitch transpositions. This rep-
resentation is deep, multiscale, and convolutional in the
piano-roll domain, yet incurs no prior training, and is thus
suited to both supervised and unsupervised MIR tasks. The
eigenprogression transform combines ideas from the spi-
ral scattering transform, spectral graph theory, and wavelet
shrinkage denoising. We report state-of-the-art results on a
task of supervised composer recognition (Haydn vs. Mozart)
from polyphonic music pieces in MIDI format.

1. EIGENTRIADS

Let x[t, p] ∈ MT,P (R) the piano-roll matrix of a musical
piece, either obtained by parsing symbolic data or by ex-
tracting a melody salience representation from audio [2].
The constant T (resp. P ) is typically equal to 210 (resp.
27). Within the framework of twelve-tone equal tempera-
ment, we define the major and minor triads as the tuples
I1 = (0, 4, 7) and I0 = (0, 3, 7). For each quality q ∈ Z2

and frequency β ∈ Z3, let

ψtriad
β1,q [p] =

3∑
n=1

exp

(
2πi

βn

3

)
δ
[
p− Iq[n]

]
, (1)

where δ[p−Iq[n]] is the Kronecker delta symbol, equal to
one if p = Iq[n] and zero otherwise. Let Gq the induced
subgraph of Iq , where Iq is understood as a set of vertices
in ZP . Observe that {p 7→ ψtriad

β,q }β consists of the eigen-
functions of the unnormalized Laplacian matrix of Gq:

Ltriad
q [p, p′] = |Iq|δ[p ∈ Iq]δ[p′ ∈ Iq]− δ[p

Gq∼ p′] (2)

As a result, we propose to name eigentriads the complex-
valued signals ψtriad

β1,q in pitch space. We construct a mul-
tiresolution convolutional operator in the piano-roll domain
by separable interference Ψtriad

(α1,β1,q)
[t, p] = ψα1

[t]ψtriad
β1,q [p]
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between the aforementioned eigentriads and a family of
temporal Gabor wavelets

ψα1
[t] = α1 exp

(
−α

2
1t

2

2σ2

)
exp(iα1ξt) (3)

for t ∈ J0;T J. We set ξ = 2π
3 , σ = 0.1, ξ = 2π

3 , and
log2 α1 ∈ J0; log2 T K. We define the eigentriad transform
of x as the rank-five tensor resulting from the complex
modulus of all convolutions between x and multivariable
wavelets Ψtriad

(α1,β1,q)
[t, p]:

U1(x)[t, p, q, α1, β1] =
∣∣∣x ∗Ψtriad

(α1,β1,q)

∣∣∣ [t, p]
=

∣∣∣∣∣∣
T−1∑
t′=0

P−1∑
p′=0

x [t′, p′] Ψtriad
(α1,β1,q)

[t− t′, p− p′]

∣∣∣∣∣∣ , (4)

where the difference in t (resp. in p) is computed in ZT
(resp. in ZP ). By averaging the tensor U1(x) over the di-
mensions of time t, pitch p, and triad quality q, one obtains
the matrix

S1(x)[α1, β1] =
∑
t∈ZT

∑
p∈ZP

∑
q∈Z2

U1(x)[t, p, q, α1, β1].

(5)
The operatorx 7→ S1(x) characterizes the relative amounts
of ascending triads (β1 = 1), descending triads (β1 = −1),
and perfect chords (β1 = 0) at various temporal scales α1

in the piece x, while keeping a relatively low dimensional-
ity, equal to 3 log2 T . The averaging along variables t and
p involved in Equation 5 guarantees that S1 is invariant to
the action of any temporal shift operator τ∆t : x[t, p] 7→
x[t + ∆t, p], as well as any pitch transposition operator
π∆p : x[t, p] 7→ x[t, p+ ∆p]:

∀∆t ∈ ZT,∀∆p ∈ ZP,S1(π∆p ◦ τ∆t ◦x) = S1(x). (6)

Furthermore, the averaging across triad qualities q implies
approximate invariance to tonality, in the sense that replac-
ing major triads by minor triads and vice versa inx (insofar
as this is feasible in the signal x at hand) does not affect
the matrix S1(x). From the standpoint of serialist music
theory [1], the presence of signed eigentriad frequencies
β1 = ±1 ensures that S1 is not invariant to retrogradation
R : x[t, p] 7→ x[−t, p], i.e. time reversal:

(R ◦ x) 6= x =⇒ S1(R ◦ x) 6= S1(x). (7)

However, the averaging across triad qualities q causes S1

to be invariant to inversion I : x[t, p] 7→ x[t,−p], i.e.
reversal of the pitch axis:

(I ◦ x) 6= x 6=⇒ S1(I ◦ x) 6= S1(x). (8)



The above property hinders the accurate modeling of chord
progressions in the context of Western tonal music. Indeed,
S1 fails to distinguish a perfect major cadence (Cmaj →
Fmaj) from a plagal minor cadence (Fmin → Cmin), as one
proceeds from the other by involution with I. More gener-
ally, the eigentriad transform may suffice for extracting the
quality of isolated chords (e.g. major vs. minor), but lacks
longer-term context of harmonic tension and release so as
to infer the tonal functions of such chords (e.g. tonic vs.
dominant).

2. EIGENPROGRESSIONS

In this section, we introduce a second multidimensional
feature U2, built on top of U1 and named eigenprogres-
sion transform, that aims at integrating harmonic context
in Western tonal music while still respecting the aforemen-
tioned requirements of invariance to global temporal shifts
τ∆t and pitch transpositions π∆p. We begin by defining
the Tonnetz as an undirected graph over the 24 vertices of
triads (p, q) ∈ Z12 × Z2. Let J1 = 4 (resp. J0 = 3) the
number of semitones in a major (resp. minor) third. The
unnormalized Laplacian tensor of the Tonnetz is

LTonnetz[p, q, q′, p′] =
(
δ[(−1)q(p− p′) ∈ Jq]

+ δ[(−1)q
′
(p− p′) ∈ Jq′ ]

+ δ[p− p′]
)
× δ[q − q′ + 1]

− 3δ[p− p′]δ[q − q′]. (9)

We define eigenvalues λ of the Laplacian tensor, and corre-
sponding eigenvectors v, as the solutions of the following
equation:

(LTonnetz⊗v)[p, q] =
∑
p′,q′

L[p, q, q′, p′]v[p′, q′]

= λv[p, q]. (10)

The number of distinct eigenvalues λ1 . . . λK satisfying
Equation 10 is equal to K, and their associated eigensub-
spaces form a direct sum: V1 ⊕ . . . ⊕ VK = MP,2(R).
For values of k such that dim Vk = 1, we define the
kth eigenprogressions as ψTonnetz

k [p, q] = vk[p, q], where
vk ∈ Vk and ‖vk‖2 = 1. In contrast, for values of k such
tat dim Vk = 2, we arbitrarily select two vectors vRe

k and
vIm
k satisfying vRe

k ⊥ vIm
k , ‖vRe

k ‖2 = ‖vIm
k ‖2 = 1, and

span({vRe
k ,v

Im
k }) = Vk; and define eigenprogressions as

ψTonnetz
β2

[p, q] = vRe
k [p, q] + ivIm

k [p, q]. (11)

We define multivariable eigenprogression wavelets as

Ψprog
(α2,β2,γ2)[t, p, q] = ψα2

[t]ψTonnetz
β2

[p, q]ψspiral
γ2 [p] ,

(12)
where ψα2

is a temporal Gabor wavelet of frequency and
ψspiral
γ2 is a Gabor wavelet on the Shepard pitch spiral [4]:

ψspiral
γ2 [p] = γ2 exp

(
−
γ2

2b
p
12c

2

2σ2

)
exp

(
iγ2ξ

⌊ p
12

⌋)
,

(13)

wherein γ2 ∈ {0,±1}. We define the eigenprogression
transform of x as the following rank-eight tensor:

U2(x)[t, p, q, α1, β1, α2, β2, γ2] =∣∣∣U1(x)
t,p,q
∗ Ψprog

(α2,β2,γ2)

∣∣∣[t, p, q]. (14)

At first sight, Equation 10 suffers from an identifiability
problem. Indeed, a different choice of basis for Vk would
incur a phase shift and/or a complex conjugation of the
convolutional response U1(x)

p,q
∗ ψTonnetz

k . Yet, because
the eigenprogression transform consists of Gabor wavelets
(i.e. with a symmetric amplitude profile) and is followed
by a complex modulus operator, such differences in phase
and/or spin are eventually canceled and thus have no ef-
fect on the outcome of the transform. Consequently, we
pick one arbitrary pair (vRe

k ,v
Im
k ) for each subspace Vk,

without loss of generality.

3. EXPERIMENTS

We evaluate the eigenprogression transform on a task of
supervised composer recognition between Haydn and Mozart
string quartets [7]. After averaging along time t and pitch
p, we standardize each feature in the rank-five tensor

S2(x)[α1, β1, α2, β2, γ2] =∑
t,p,q

U2(x)[t, p, q, α1, β1, α2, β2, γ2] (15)

to null mean and unit variance. Then, we train a linear
support vector machine with C = 104, and report results
with leave-one-out cross-validation. The ablation study in
Table 1 confirm that all the five scattering variables (α1,
β1, γ1, α2, β2, γ2) are beneficial to both sparsity and ac-
curacy. However, because the dataset string quartet move-
ments contains only 107 examples in total, the full eigen-
progression transform (in dimension 8385) is exposed to
statistical overfitting. For the sake of simplicity, rather than
running a feature selection algorithm, we apply wavelet
shrinkage denoising, i.e. we keep 1119 coefficients of largest
energy on average, summing up to 50% of the total en-
ergy. This adaptive procedure has been proven to be near-
optimal in the context of wavelet bases [3]. It leads to a
state-of-the-art classification accuracy of 82.2%.

4. CONCLUSION

We have diagonalized the Laplacian of the Tonnetz graph
and derived a multivariable scattering transform, named
eigenprogression transform, that captures some local har-
monic context in Western tonal music. Although the nu-
merical example we gave was a task of composer recog-
nition, the eigenprogression transform could, in principle,
addresss other MIR tasks in the future, including cover
song retrieval, key estimation, and structure analysis.



dim. `1/`2 acc. (%)
[7] 79.4
[8] 80.4
α1 8 2.6 67.3
α1 β1 24 4.6 71.0
α1 β1 α2 129 6.1 72.0
α1 β1 α2 β2 1677 17.0 76.7
α1 β1 α2 β2 γ2 8385 42.4 77.6
α1 β1 α2 β2 γ2 1119 22.3 82.2

Table 1. Comparison between the eigenprogression trans-
form and other transforms of smaller tensor rank, in terms
of dimensionality, sparsity (`1/`2 ratio), and accuracy on a
supervised task of composer recognition.
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