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ABSTRACT

Class imbalance in the training data hinders the generalization ability
of machine listening systems. In the context of bioacoustics, this issue
may be circumvented by aggregating species labels into super-groups
of higher taxonomic rank: genus, family, order, and so forth. However,
different applications of machine listening to wildlife monitoring may
require different levels of granularity. This paper introduces TaxoNet,
a deep neural network for structured classification of signals from
living organisms. TaxoNet is trained as a multitask and multilabel
model, following a new architectural principle in end-to-end learning
named “hierarchical composition”: shallow layers extract a shared
representation to predict a root taxon, while deeper layers specialize
recursively to lower-rank taxa. In this way, TaxoNet is capable of
handling taxonomic uncertainty, out-of-vocabulary labels, and open-
set deployment settings. An experimental benchmark on two new
bioacoustic datasets (ANAFCC and BirdVox-14SD) leads to state-
of-the-art results in bird species classification. Furthermore, on a
task of coarse-grained classification, TaxoNet also outperforms a flat
single-task model trained on aggregate labels.

Index Terms— Acoustic signal detection, audio databases, clas-
sification algorithms, multilayer neural network, phylogeny

1. INTRODUCTION

The range of vocalizations of an animal often bears the “acoustic
fingerprint” of its species [1]. Consequently, the deployment of
autonomous recording units allows to sample these vocalizations in
their natural environment, with numerous applications in ecology and
conservation biology [2, 3]. However, analyzing large volumes of
bioacoustic data requires to automate species classification and resort
to machine listening techniques [4].

Some vocalizations from migratory birds, known as flight calls,
are particularly identifiable in terms of species [5]. Thus, a potential
solution for mapping bird migration in real time would be to record
these flight calls from an acoustic sensor network on the ground
[6]. In this context, two open-access data science challenges named
LifeCLEF [7] and DCASE Bird Audio Detection [8] have concluded
that deep convolutional networks (convnets) achieve state-of-the-art
results in bird species classification [9].

Although convnets have recently proven successful in avian bioa-
coustics, they depend on the availability of a large training set. In the
case of a flight call, collecting reliable human annotations is costly
and time-consuming, because it requires expert knowledge.
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Fig. 1: Taxonomy of flight calls by animal order (coarse), family
(medium), and species (fine). The numbers in brackets denote the
size of quantity of annotated training samples in the BirdVox-14SD
dataset. The suffix “0” and the wildcard “*” denote “other” and
“unknown” respectively.

Furthermore, flight call datasets are typically imbalanced in terms
of species labels, due to disparities in abundance and vocal activity
[10]. Lastly, the presence of background noise may hamper the identi-
fiability of some vocalizations, even to an expert ear, thereby resulting
in label uncertainty [11]. For these reasons, flight call classification
remains an open research problem. Beyond the example of flight
calls, these three issues issues recur throughout many applications of
convnets to the life sciences [12].

In this article, we propose a new supervised learning framework
for hierarchical classification in deep neural networks. The key idea is
to decompose each species label into a sequence of taxa of decreasing
rank, typically: order, family, genus, and species itself. In this way,
species classification becomes a multitask problem, wherein each task
corresponds to retrieving the taxon at a different rank. The companion
website of this paper presents a quantitative benchmark of design
choices in the formulation of hierarchical multitask learning, in the
practical setting of flight call classification.1

1Companion website: https://github.com/BirdVox/cramer2020icassp



2. RELATED WORK

Hierarchical classification is an instance of structured classifica-
tion [13] in which classes are akin to nodes on a tree [14]. It has found
applications in multiple domains, including natural language [15],
environmental sounds [16], and music [17]. One recent publication
proposes a hierarchical classification approach for analyzing frog
calls [18]; but this approach does not rely on neural networks, and
does not accommodate out-of-vocabulary labels.

The appeal behind formulating bird species recognition as a hi-
erarchical classification problem consists in drawing insights from
evolutionary biology [19]. The theoretical framework of Darwinian
classification, perfected in the 20th century thanks to the technology
of genomic sequencing, has led to a comprehensive phylogeny of the
class of birds (Aves) based on the notion of last common ancestor [20].
Although this phylogeny does not always reflect acoustic similarity
between vocalizations, it has the advantage of being systematic and ro-
bust to intraspecific variations in phenotype. In contrast, hierarchical
taxonomies for urban sounds requires to collect similarity judgments
between acoustic events [21], which may vary across individuals,
cultures, and use cases [22].

Identifying an animal vocalization at multiple levels of the tax-
onomy has a strong potential in applied bioacoustics. Indeed, in
many conservation science initiatives, the most relevant level of the
taxonomy may not be known ahead of time. To address this problem,
the simplest methodology would be to train a separate classifier at
each level of the hierarchy of interest. However, this approach incurs
a significant software development cost, i.e. to train and maintain
multiple “flat” classification models. On the contrary, a hierarchical
model requires a single pass of training; in addition, it may discover
informative correlations between related taxa, thereby mitigating the
effect of class imbalance. In this sense, hierarchical classifiers fol-
low a paradigm of multitask learning [23, 24]. A recent publication
combines multitask hierarchical classification with metric learning to
detect acoustic events [25]; but this hierarchy-aware training loss is
not reflected is the architecture of the proposed neural network.

3. NEW DATASETS: ANAFCC AND BIRDVOX-14SD

3.1. Taxonomy

Figure 1 illustrates our proposed taxonomy. We focus on a set of 14
species of migratory birds, all belonging to the Passeriformes order,
and gathered into four families: American sparrows (Passeridae),
cardinals (Cardinalidae), thrushes (Turdidae), and New World War-
blers (Parulidae). In the following, we refer to the three taxonomic
ranks at hand (order, family, species) as coarse, medium, and fine
level respectively. Each of the levels contains a catch-all category for
sounds which fall in none of the taxa of interest.

3.2. American Northeast Avian Flight Call Classification

To train our model, we aggregate flight calls from different sources:
BirdVox-70k [26], CLO-43SD, CLO-SWTH, CLO-WTSP [4], the
Macaulay Library [27], Xeno-Canto [28], and Old Bird [29]2. An
expert ornithologist (AF of the authors) verified or re-annotated those
clips and aligned each flight call precisely at the center of its cor-
responding clip. We release this set of recordings and annotations
as the American Northeast Avian Flight Call Classification dataset;
henceforth ANAFCC3.

2Official website of Old Bird, Inc.: http://www.oldbird.org
3Download ANAFCC: https://doi.org/10.5281/zenodo.3666782

3.3. BirdVox 14 Species Dataset

For evaluation, we collect 6600 hours of audio from ten autonomous
recording units in Ithaca, NY, USA, following the same protocol as
BirdVox-full-night [26]. In order to maximize diversity across sensor
locations, time of day, week in the season, and background noise
characteristics (as represented by vector quantizations of median
MFCCs), we select 150 two-hour recordings by means of the Entrofy
library4. Then, an expert ornithologist (AF of the authors) annotated
each of these recordings by pinpointing flight calls and labeling
species. We refer to this dataset as the BirdVox 14 Species Dataset;
henceforth BirdVox-14SD5. BirdVox-14SD aims to provide a broader
snapshot of avian activity in a full migratory season than BirdVox-
full-night, which is based on a single night of migration.

3.4. Cross-dataset evaluation

In the following, we train and validate our models on ANAFCC
and evaluate them on BirdVox-14SD. We train all of our models
up to 1.152M examples by means of the Adam optimizer with an
initial learning rate of 10−4. Because the class distributions differ
between the two datasets, we create a training-validation split by
formulating the allocation of examples to the validation set as a
knapsack problem [30] treating individual data sources containing
a particular fine-level class as items, with weights corresponding to
the number of examples contained within. We consider validation
knapsack sizes between 15-30% of the total number of examples in
ANAFCC, and for each find the optimal validation knapsack with
Google OR-Tools. Among these candidate splits, we choose the split
with the lowest average of Jensen-Shannon divergence between the
fine-level class distributions of the split subsets and BirdVox-14SD.

3.5. Per-Channel Energy Normalization (PCEN)

For the sake of cross-library compatibility, we use the same prepro-
cessing frontend as BirdVoxDetect [31]: we resample each audio
clip to a 22,050 Hz, apply a log-scale mel-frequency spectrogram
with a window size 256 (12 ms), hop size of 32 (1.5 ms), and 128
mel-frequency subbands ranging from 2000 Hz to 11,025 Hz. We
then apply per-channel energy normalization (PCEN) [32] with li-
brosa v0.7.0 [33] with parameters chosen identically to those used in
prior work on flight call detection [34], that is, ε = 10−6, α = 0.8,
δ = 10, r = 0.25, and TPCEN = 60 ms. Lastly, we extract the center
104 frames (150 ms) of the PCEN representation as 2-D input to the
convnet. We apply random digital audio effects as data augmentation:
pitch shifting, time stretching, and addition of background noise [35].
We sample training data uniformly with respect to fine-level classes
by means of the pescador library [36].

3.6. Baseline

The base architecture of our models mirrors the deep convolutional
networks described by [10], shown to obtain state-of-the-art accu-
racy on the CLO-43SD dataset when combined with shallow learn-
ing approaches. This model consists of three convolutional layers
(`1, `2, `3), a flattening layer (henceforth `3,flat), a fully connected
hidden layer (`4), and a fully connected output layer (`5). All hid-
den layers use rectified linear units (ReLU) as activation functions.
Furthermore, note that we disable bias weights on all layers.

4Source code of Entrofy: https://github.com/dhuppenkothen/entrofy
5Download BirdVox-14SD: https://doi.org/10.5281/zenodo.3667094



4. MULTILABEL HIERARCHICAL COMPOSITION
IN THE TAXONET CLASSIFIER

4.1. Partition of nodes at every layer

In the single-task baseline, only the deepest layer `5 contains out-
put nodes. Conversely, TaxoNet associates `3,flat to the coarse-level
predictions, `4 to the medium-level predictions, and `5 to fine-level
predictions. We partition each layer `k such that each taxon is allo-
cated a number of nodes that is proportional to its number of subtaxa
at the level below (`k+1). Such a partition implies that the linear span
of the layer at hand gets decomposed into a direct sum of orthogonal
subspaces, each corresponding to a different taxon.

Furthermore, we induce a sparsity constraint on the synaptic
weights: each of the subspaces in `k only activates the subspaces
in the `k+1 partition which correspond to its children nodes in the
taxonomy. In this coarse-to-fine scheme, the subspace decomposi-
tion progresses recursively as depth increases, until becoming an
orthogonal basis at the deepest layer.

4.2. Prediction of out-of-vocabulary taxa

Let Ck the number of in-vocabulary taxa at rank k , and c ≤ Ck
some in-vocabulary taxon among them. We denote by xk,c ∈ Rnk,c

the layer partition of nk,c nodes associated with class c. Let ak,c|θ ∈
Rnk,c be the trainable vector of neural network weights associated to
taxon c. TaxoNet predicts the probability of presence of c as

yk,c = σ

(nk,c∑
m=1

ak,c|θ(m)xk,c(m)

)
, (1)

where σ denotes the sigmoid function. Moreover, TaxoNet predicts
the probability of presence of the catch-all taxon (“other”) as the
complement of the most likely in-vocabulary taxon:

yk,other = 1−
(

max
1≤c≤Ck

yk,c

)
. (2)

Note that the probabilities yk,c and yk,other range between zero and
one, but do not necessarily sum to one. Therefore, we train each level
k in TaxoNet by means of a separate binary cross-entropy loss for
each yk,c and for yk,other. In this sense, each TaxoNet layer resembles
a multilabel classifier. The rationale behind this design choice is
that we intend to focus the representational power of TaxoNet on in-
vocabulary taxa, while dedicating no trainable parameters to potential
out-of-vocabulary taxa. Given Equation 2, an out-of-vocabulary
sample may be correctly classified at the shallower level (`k−1) while
being correctly excluded from layer `k and deeper.

4.3. Results

We evaluate all proposed models according to two metrics: micro-
averaged and macro-averaged accuracy. The former assigns an iden-
tical penalty to every misclassified sample, regardless of its class.
The latter operates in two stages: it first measures the probability of
correct classification on a classwise basis, and then averages these
probabilities uniformly across classes. Because our the ANAFCC and
BirdVox-14SD datasets are imbalanced, classifiers tend to fare worse
in terms of macro-averaged accuracy than micro-averaged accuracy.

Table 1 summarizes our benchmark; it also includes results from
our ablation study (see Section 5). In terms of species classification,
we find that TaxoNet outperforms the baseline, a single-task classifier,
both in micro-averaged (66.33% vs. 61.13%) and macro-averaged

(a) TaxoNet: hierarchical, multitask

(b) flat, single-task (c) non hierarchical, multitask

Fig. 2: Computational graphs of: (a) TaxoNet model (hierarchical
multitask); (b) flat single-task model; (c) non-hierarchical multitask
models. See Section 5 for details.

(55.69% vs. 54.80%) accuracies. This result suggests that TaxoNet
has potential for improving the state of the art in bioacoustic species
classification.

We also observe that TaxoNet outperforms single-task baselines
on coarser tasks. In terms of four-way family classification, for
example, TaxoNet reaches a micro-averaged accuracy of 76.50%,
compared with 73.80% for the baseline. This result suggests that
TaxoNet is indeed capable of multitasking, and adapt the taxonomic
rank of its output to user preferences at runtime.

Thirdly, we compare TaxoNet against a single-task species clas-
sifier on a coarse task. In the case of flight calls, the coarse task
consists in deciding whether a given sound arises from a passerine
(order Passeriformes) or not. We observe a wide gap in accuracy:
`3,flat in TaxoNet fares at 94.69% while the coarsened `5 in the base-
line fares at 77.72%. This result that TaxoNet is not only better than
the baseline on average; it also makes less glaring mistakes. Specifi-
cally, TaxoNet may occasionally confuse flight calls across species
of the same family, or across families of the same order; but it would
rarely label a non-bird sound as a flight call or vice versa.

4.4. Open-source distribution under MIT license

We distribute TaxoNet as a pretrained model as part of a Python library
named BirdVoxClassify6. BirdVoxClassify is a dependency of Bird-
VoxDetect as of v0.2, thus allowing joint detection and classification
of flight calls in a single pass of audio streaming, mel-spectrogram
analysis, and PCEN.

6Repository: https://github.com/BirdVox/birdvoxclassify



# FIN FIN MED MED
Trained Micro Macro Micro Macro COA

Model Params Acc. Acc. Acc. Acc. Acc.
Flat ST [FIN] 641K 61.13 54.80 64.61 50.40 77.72

Flat ST [MED] 640K - - 73.80 56.04 94.75
Flat ST [COA] 640K - - - - 93.85

TaxoNet 649K 66.33 55.69 76.50 61.60 94.69
Non-H. MT 641K 61.82 55.83 75.10 55.87 94.39
H. Baseline 650K 58.74 58.06 75.83 60.04 94.54

H. Cont. 640K 63.47 41.46 79.36 65.08 94.75
H. Comp. MC 649K 60.39 52.30 75.94 56.96 94.67

Table 1: Model comparison. ST: single task, MT: multitask, H: Hier-
archical, Cont: Containment, Comp: Composition, ML: multilabel,
MC: multiclass. For single-task models, predictions at coarser taxo-
nomic levels are obtained by coarsening the prediction, and “other”
is mapped to “other” at the corresponding level.

5. ABLATION STUDY

This section briefly discusses some alternative design choices to
TaxoNet for multitask species classification. The full set of experi-
mental results is presented in Table 1.

5.1. Non-hierarchical multitask model (Non-H. MT)

This model, depicted in Figure 2 (c), predicts taxa at all levels from
the deepest layer, `5. Therefore, the output of `4 serves as a shared
representation for all tasks.

5.2. Hierarchical baseline model (H. Baseline)

This model is hierarchical, in the sense that `3,flat and `4 respectively
predict coarse-level and medium-level taxa. However, this model is
not compositional: `3,flat is densely connected to `4 and `4 is densely
connected to `5. This is unlike TaxoNet, in which connections are
sparse and nested recursively according to hierarchical composition.

5.3. Hierarchical containment model (H. Cont.)

This model is similar to TaxoNet, but replaces all inner products with
trainable vectors ak,c|θ by unweighted averages. It uses tanh in lieu
of sigmoid for σ so that zero maps to zero. Consequently, if the
activation for a class is zero, all subclasses in the taxonomy will also
have activations of zero, by definition.

The hierarchical containment model seems to outperform all
other models with respect to medium-level accuracy, but achieves
the lowest medium-level macro-accuracy. The reason for this is not
entirely clear, but could be due to difficulties in training due to the
model zeroing out activations for all subtaxa of an inactive node.

5.4. Hierarchical composition multiclass (H. Comp. MC)

This model is identical to TaxoNet, except that it devotes a specific
trainable vector ak,other|θ to represent the probability of the “other”
class yk,other. Consequently, the output probabilities of each rank k
now sum to one, and hierarchical classification can be formulated as
a multiclass problem with a softmax nonlinearity; whereas TaxoNet
formulates it as a multilabel problem with sigmoid nonlinearities.

6. CONCLUSION AND FUTURE PERSPECTIVES

In this paper, we have presented a neural network architecture, named
TaxoNet, which performs a joint prediction at multiple levels of a
known taxonomy. On a task of bird species classification from flight
calls, we showed that TaxoNet performs comparably to a specialized
model trained to predict at any particular taxonomic level. Moreover,
TaxoNet outperforms the strategy of coarsening predictions produced
by models trained to predict at finer taxonomic levels. Through
this work, we have also released the ANAFCC and BirdVox-14SD
datasets as well as the BirdVoxClassify Python package.

We must acknowledge that the taxonomy with which we have
worked is relatively small: 14 nodes at the finest level. It is of interest
to inquire about the effect of the depth and width of taxonomy on the
accuracy of TaxoNet. Besides, we have only discussed a few methods
for incorporating taxonomy into the training methods and architecture
design of deep hierarchical models, but there are a number of other
ways that applying inductive bias inspired by biological taxonomy
could be explored. In particular, hierarchical multitask training of
classifiers have the potential to be useful in cases where, depending
upon annotator skill or interest, annotations for flight calls may vary
in specificity.

There are a number of opportunities for future work in the
TaxoNet framework of hierarchical classification. Class balancing
techniques may improve the balance at every level of the taxonomy,
especially the coarser levels which are currently heavily imbalanced.
Furthermore, multiclass models can be extended to produce joint
probabilities that ensure hierarchical consistency in the model’s pre-
dictions, which is crucial for robust hierarchical classification [14].
Lastly, the complex optimization landscape of multitask training alone
can make model fitting difficult; yet, recent advances in curriculum
learning [37] might alleviate these issues in the near future.
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target prediction: a unifying view on problems and methods,”
DMKD, vol. 33, no. 2, pp. 293–324, Mar 2019.

[25] A. Jati, N. Kumar, R. Chen, and P. Georgiou, “Hierarchy-aware
loss function on a tree structured label space for audio event
detection,” in Proc. ICASSP. IEEE, 2019, pp. 6–10.

[26] V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling, and J. P.
Bello, “Birdvox-full-night: a dataset and benchmark for avian
flight call detection,” in Proc. ICASSP ’18, April 2018.

[27] I. Betancourt and C. M. McLinn, “Teaching with the Macaulay
library: an online archive of animal behavior recordings,”
JMBE, vol. 13, no. 1, pp. 86, 2012.

[28] W. P. Vellinga and R. Planqué, “The Xeno-Canto collection and
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