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ABSTRACT

Octave equivalence serves as domain-knowledge in MIR
systems, including chromagram, spiral convolutional net-
works, and harmonic CQT. Prior work has applied the
Isomap manifold learning algorithm to unlabeled audio
data to embed frequency sub-bands in 3-D space where
the Euclidean distances are inversely proportional to the
strength of their Pearson correlations. However, discover-
ing octave equivalence via Isomap requires visual inspec-
tion and is not scalable. To address this problem, we de-
fine "helicality" as the goodness of fit of the 3-D Isomap
embedding to a Shepherd-Risset helix. Our method is un-
supervised and uses a custom Frank-Wolfe algorithm to
minimize a least-squares objective inside a convex hull.
Numerical experiments indicate that isolated musical notes
have a higher helicality than speech, followed by drum hits.

1. INTRODUCTION

Octave equivalence refers to the perceived consonance of
any pair of tones whose frequency ratio is a power of two.
Although not universally shared across listeners, this phe-
nomenon lies at the foundation of multiple theories of mu-
sic around the globe. For example, concepts such as Sap-
tak in Indian classical music or Tonnetz in German classi-
cal music both rely on the hypothesis that notes one octave
apart can be assigned to the same pitch class.

To explain computer-generated auditory paradoxes such
as the circularity of Shepard tones [1–3], music psycholo-
gists represent pitch on a 3-D helix (or, equivalently, a 2-D
spiral) which makes a full turn at every octave, thereby
aligning power-of-two harmonics [4].

In MIR, the earliest representation with octave equiv-
alence is arguably the chromagram [5], i.e., a constant-Q
transform (CQT) followed by summation across octaves.
More recently, the spiral scattering transform [6] applies
a multivariable wavelet modulus operator before octave
summation, thus improving discriminability while guaran-
teeing stability to octave transposition.

Another line of research considers octave equivalence
as domain-specific knowledge in deep learning. Spiral
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convolutional networks [7] have receptive fields à trous
(“with holes”) spanning across octaves. Comparable ideas
are found in more recent publications, such as harmonic
CQT [8], folded CQT [9], Fifthnet [10], harmonic filters
[11], and harmonic convolutions [12].

Despite the practical effectiveness of octave equiva-
lence in various MIR tasks, the question of discovering
octave equivalence directly from data has received less at-
tention. One exception is [13], which applied multidimen-
sional scaling (MDS) to visualize mutual information be-
tween time–frequency atoms learned by independent com-
ponent analysis (ICA). More recently, [14] have applied
the Isomap manifold learning algorithm [15] to visualize
Pearson correlations between CQT activations.

One shortcoming of methods [13] and [14] is that they
are purely illustrative: although they provide a scatter plot
of time–frequency atoms in 3-D, the outcome is left to vi-
sual inspection, which hampers their scalability. Our paper
addresses this problem by proposing a geometrical crite-
rion as to whether a 3-D scatter plot resembles a helix.

2. METHODS

Given an unlabeled audio dataset of N audio files, we use
librosa v0.8.0 to compute a CQT representation of every
file with Q = 24 bins per octave. We restrict the dataset in
the time domain to the loudest CQT frame in each audio
file; and in the frequency domain, to the J = 3 octaves
of greatest variance. This results in a matrix X with P =
24× 3 = 72 rows and N columns.

We extract squared Pearson correlations ρ2[u, v] across
all pairs of features, and apply the following formula:

Dρ2 [p, q] =

√
−1

2
logρ2[p, q] (1)

to convert them into pseudo-Euclidean distances. Follow-
ing the methodology of Isomap, we use Dρ2 to compute
a nearest-neighbor graph with k = 3 neighbors per ver-
tex. With scikit-learn v0.20.0 , we apply classical multidi-
mensional scaling (MDS) to build an embedding space in
which Euclidean distances approximate geodesic distances
on the graph. We refer to [14] for further details.

Let em and λm be the eigenvectors and eigenvalues re-
sulting from MDS. We rank eigenvalues in decreasing or-
der without loss of generality. We represent every sub-
band p by a point y[p] = (e1[p], e2[p]) on the plane. Let
χ denote chroma. Then, we compute chroma centroids
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ỹ[χ] =
1

J

∑J−1
j=0 y[χ + Qj]. Our postulate is that if X

has a property of octave equivalence, then the set of points
Y = {ỹ[1] . . . ỹ[χ]} should form a circle.

We apply the Quickhull algorithm [16] to extract the
convex hull of Y , denoted by H. We denote by c0 the
barycenter of vertices in H. Then, we fit a circle to Y by
seeking a point c inside H which minimizes the following
objective:

Vcircle(c) =

Q∑
χ=1

∥∥c− ỹ[χ]∥∥2
2
− 1

Q

(
Q∑
χ=1

∥∥c− ỹ[χ]∥∥
2

)2

,

(2)
taken from [17, Equation 4]. In practice, we solve the
problem above via a custom implementation of the Frank-
Wolfe conditional gradient algorithm [18], initialized at c0.

Likewise, we seek two parameters a and b such that the
affine function p 7→ (a×p+b) approximates the sequence
z = e3 by minimizing the following objective:

Vline(a, b) =

P∑
p=1

∥∥a× p+ b− z[p]
∥∥2
2

(3)

We solve the problem above by linear regression.
On the point cloud ψ[p] = (e1[p], e2[p], e3[p]), we fit

a helix based on the circle and line estimates, denoted by
ψ

′
[p] . Then, we define helicality as the inverse of the

mean squared Euclidean distance between the embedding
points and the projected points in Equation 4. This mea-
sures the deviation of the embedding from an ideal helix,
denoting the extent of octave equivalence in the frequency
content of the audio dataset.

H =
1

1

P

∑P
p=1

∥∥ψ[p]−ψ′
[p]
∥∥2
2

, (4)

3. RESULTS

We analyze three datasets: TinySOL (music) [19], which
contains 2913 recordings from 14 instruments; ENST-
drums (drums), from which we select the subset of 107 iso-
lated drum hits from 3 drummers; and North Texas Vowel
Dataset (speech), containing 3190 recordings of voiced
vowels by 50 American English speakers.

On visual inspection, music data has a more helical em-
bedding topology than speech data in Fig. 1. Accordingly,
speech data has a lower helicality score H = 0.30, while
music data has a higher score H = 0.54.

Horn (H = 0.94) produces the most helical embedding,
seen in Fig. 2, followed by Accordion (H = 0.58). Iso-
lated drum hits have a lowest helicality score of H = 0.28.
Fig. 3 compares different instrument classes. Surprisingly,
Trumpet (H = 0.34) has a low helicality score, despite its
characteristic harmonic structure.

4. CONCLUSION

We have presented a method for fitting a helix to a 3-D
manifold of CQT subbands. Further research is needed to
examine whether helicality matches human perception.

(a) Music. Helicality: 0.54. (b) Speech. Helicality: 0.30.

Figure 1. Isomap embedding of music (left) and speech
(right) data. The hue of the colored dots and the grey line
denote pitch chroma and pitch height. The black squares
and the solid black line represent the convex hull. The red
diamond and green square respectively denote initial and
final center estimate for circle fitting.

(a) Horn only. Helicality: 0.94. (b) Drums only. Helicality: 0.28.

Figure 2. Isomap embedding of isolated instruments: horn
(left) and drums (right). See Figure 1 for legend.
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Figure 3. Helicality scores of TinySOL instrument classes.
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