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On Time-frequency Scattering and Computer Music
Vincent Lostanlen

… qu’il disperse le son dans une pluie aride …
— Paul Valéry

The quest for an adequate representation of auditory textures lies at the 
foundation of computer music research. Indeed, none of its analog predeces-
sors ever managed a practical compromise between two concurrent needs 
in sound design: first, to reproduce faithfully any pre-existing texture; and sec-
ondly, to offer enough flexibility for sculpting novel textures from scratch. For 
example, Schaeffer’s musique concrète offered a precise typology of musical 
objects, yet constrains the composer to a raw, figurativistic material.1 On 
the other hand, Stockhausen’s Elektronische Musik, as it arranges simple nois-
es and tones through time, may have uncovered new avenues in musical 
abstraction; yet at the cost of a narrow, distinctively “robotic” timbral palette.2 
In the history of music technology, such an opposition between specificity 
and expressivity is reflected in the respective developments of granular syn-
thesis and additive synthesis: one is universal but computationally intracta-
ble; the other is terse but somewhat clunky. With the democratization of ana-
log-to-digital audio conversion, both aforementioned schools of thought 
came into decline, and new tools for sound manipulation in the time-frequen-
cy domain, such as the phase vocoder, gained momentum among contem-
porary music composers. However, the progressive digitization of the music 
studio has brought little progress to the long-lasting problem of audio tex-
ture synthesis and manipulation.
	 The science of auditory neurophysiology paved the way towards a com-
putational framework for audio texture modeling that could reconcile the spec-
ificity of musique concrète with the expressivity of Elektronische Musik. In 
1996, Nina Kowalski and her colleagues employed an array of silicon electrodes 
to measure the cortical responses of a ferret to computer-generated ripple 
stimuli, exhibiting modulations in both time and frequency.3 Pairwise correla-
tions between stimuli and responses led to an exhaustive mapping of the 
primary auditory cortex of mammals, which associates each neuron to a spec-
trotemporal receptive field (STRF)—that is, the time-frequency representa-
tion pattern eliciting maximal excitation of this neuron. Kowalski et al. concluded 
that our brain integrates the acoustic spectrum through time in terms of 
its spectrotemporal modulations at various scales (pitch intervals) and rates 
(pulse tempi). Neither exclusively rhythmic (temporal), nor exclusively har-
monic (frequential), our brain is indeed a joint, rhythmico-harmonico-melodic 
processor that encodes sound into a multifaceted sensation.
	 Despite marking a watershed in our understanding of music perception, 
this finding long remained outside the technological landscape of computer 
music designers because the biologically inspired STRF representation was not 
an invertible procedure. Instead, although STRF allowed mapping sounds 
to specific areas of the auditory cortex, the dual problem of sonifying the neu-
ro-electrical activations of these areas had remained largely unexplored. In 
addition, since STRF had been obtained empirically from ferret neuronal action 
potentials, the resulting representation could not be interpreted post hoc 
in terms of continuous perceptual parameters, such as pitch or tempo. Simply 
put, STRF are more concrete than musique concrète itself—in lieu of ear-
drum vibrations, what they contain is a heatmap of primary auditory cortex 
activity—but lack the mathematical concision of an Elektronische Musik 
score in order to allow for any compositional intervention on the world of natu-
ral sounds.
	 From 2013 to 2016, I was a graduate student at École normale supérieure, 
striving to develop new convolutional operators in the time-frequency 
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wherein the multiindex  encapsulates log-wavelengths , particle 
spins , and the infix operator  denotes list construction (“cons”) in 
the ML family of programming languages. The conceptual jump from purely 
temporal scattering to time-frequency scattering eventually turned out to 
be fruitful, but difficult: because wavelengths  at one layer of the network 
(e.g. pitch   or tempo  ) may take over the roles of spatial variables  in 
a deeper network, keeping track of all cross-dependencies between variables 
appealed for a more systematic resort to recursion in our numerical appli-
cations.
	 Andén and I studied the above definition in complementary ways. He 
used the principle of the stationary phase to confirm that time-frequency scat-
tering characterizes the chirp rates of ripple stimuli, analogously to STRF in 
the primary auditory cortex. He also designed a multiresolution analysis scheme 
for time-frequency scattering, in the fashion of Mallat’s discrete wavelet 
transform algorithm and Simoncelli’s steerable pyramid. This scheme allowed 
interpreting the time-frequency scattering transform as the response of a 
deep convolutional neural network whose depth grows logarithmically with 
receptive field size. On my part, I wrote down the production rules of the 
following context-sensitive grammar, so that the language of admissible paths 
in a time-frequency scattering network could be described exhaustively by a 
nondeterministic Turing machine with linearly bounded tape memory:

Once the recursive grammar above was in place, I was able to reason at 
compile time on the computation graph of time-frequency scattering archi-
tectures, and cast Waldspurger’s advances in phase retrieval from time scat-
tering coefficients into a multivariable framework. Upon advice from Joan Bruna, 
Assistant Professor of Computer Science and Data Science at New York 
University, I opted for synthesizing sound by stochastic gradient descent: 
starting from a random initial guess—usually, Brownian motion noise—this 
procedure adds a corrective term to the signal at every iteration, so that its 
time-frequency scattering coefficients match those of a predefined textur-
al target. Incidentally, it is also by means of stochastic gradient descent that 
most of the algorithms that are known today, albeit somewhat improperly, as 
artificial intelligence, learn to perform tasks of computer vision, automatic 
speech recognition, and language translation. Because time-frequency 
scattering networks, just like deep convolutional neural networks, consist of 
differentiable layers, the corrective term in stochastic gradient descent can 
be computed by a method of Lagrange multipliers, named backpropagation. 
There is, however, one distinction between the two iterative procedures: 
whereas in deep learning, gradient backpropagation causes an infinitesimal 
update of synaptic weights in order to bring the predicted output closer to 
the ground truth, here, the synaptic weights are kept fixed, under the form of 
wavelet impulse response coefficients; but it is the raw waveform itself that 
gets updated towards a local minimum of the Euclidean error functional 

 with
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domain for modeling musical timbre.4 With my coworker Joakim Andén and my 
advisor Stéphane Mallat, I contributed to a STRF-based computational 
model for audio texture synthesis, under the name of time-frequency scatter-
ing. Time-frequency scattering was meant as the successor to “time scat-
tering,” as it was formulated by Mallat himself in 2012. The name was coined as 
a nod to the world of quantum mechanics: from the reddish shade of a 
sunset to the glistening of a pearl, many are the microscopic phenomena 
encompassed by the umbrella term of scattering. The commonality be-
tween such phenomena is that they all involve a radiation of some kind as well 
as a maze of nonuniformities. Let  be a Gaussian bell curve. In the con-
text of scattering transforms, the radiation a sound pressure wave , 
while the maze consists of Morlet wavelets

[1]

tuned at resolutions , as well as modulus nonlinearities.
	 Before time-frequency scattering was formalized, Mallat had defined the 
time scattering transform as a cascade of purely temporal wavelet modulus 
operators: 

[2]

and then generalized his theory to all real-valued functions of finite energy 
defined over the irreducible representations of a given compact Lie group.5 
Shortly thereafter, my coworker Irène Waldspurger proved that scattering trans-
forms—despite the loss of the phase incurred by the complex moduli—are 
invertible with continuous inverse.6 She resorted to advanced methods in 
topology and complex analysis (namely the Riesz-Fréchet-Kolmogorov theo-
rem and meromorphic extensions, among others) to come up with this aston-
ishing result: on the condition that the chosen wavelets form a “tight” 
frame of the functional space at hand, and towards the limit of infinite depth 

, the time variable can ultimately be removed from the equation, 
because the oscillatory nature of sound vibrations in  becomes fully char-
acterized by its interference pattern through the scattering network. Going 
back to the metaphor of Mie scattering in quantum mechanics, it is as though 
Mallat and Waldspurger had unearthed some kind of all-witnessing crystal, 
whose eternal glisten was a petrified testimony of every light it had seen before.
	 Waldspurger’s invertibility theorem spurred my interest for improving 
the state of the art in audio texture synthesis. Nevertheless, one important 
drawback of the scattering transform—in its original, purely temporal defi-
nition—is that it does not include the notions of relativity of pitch nor relativity 
of tempo. Instead, each wavelet modulus layer decomposes all paths 

 asynchronously. It was after personal communications with 
Shihab Shamma that we realized the crucial importance of accounting for 
joint modulations in time and frequency ; or, said in algebraic 
terms, for elastic displacements over the affine Weyl-Heisenberg group on 

. Consequently, we proceeded to generalize the one-dimensional Morlet 
wavelet in Equation [1] by a tensor product over multiple variables , 
yielding time-frequency scattering wavelets of the form 

[3]
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coefficients from the reconstructed waveform at iteration ) and the Elektro­
nische paradigm (i.e. to synthesize a waveform at iteration  from the 
numerical parameters obtained through gradient backpropagation at iteration 

). Then, once such a playful interaction is in place, the decision of printing out 
the values of time-frequency scattering coefficients, originating from an analysis 
of the three movements of “FAVN,” figurates the ad infinitum limit of both 
paradigms.
	 Between the analysis and re-synthesis steps, occurs a stage of abstrac-
tion: that of sorting all time-frequency scattering paths by the relative amount 
of energy that they carry. Measuring energy in a given scattering path  is 
made possible by the Littlewood-Paley condition

            ,

[5]

which states that, for every variable , the filterbank of wavelets   and its 
corresponding scaling function  unitarily cover the Fourier domain. This 
double inequality implies that the amount of energy in a scattering represen-
tation is the same at every layer—and, therefore, equal to the energy of the 
original waveform . Therefore, in the context of time-frequency scattering, 
and for any value of the path , the ratio  is a di-
mensionless quantity between zero and one. Multiplying this quantity by 10⁶ 
converts it into a number of parts per million (ppm). This number is the left-
most column in the table. The second column denotes acoustic frequency in 
Hertz (Hz), corresponding to the temporal log-frequency variable  in the 
first layer of the scattering network. The third column denotes temporal mod-
ulation frequency, also known as rate in Hertz (Hz), and corresponding to the 
temporal log-frequency variable  in the second layer. It should be remarked 
that the acoustic frequency belongs to the audible range (20 Hz – 20 kHz), 
but that the temporal modulation frequency can be as low as 1 Hz, and as high 
as 1 kHz under the condition . Lastly, the fourth column denotes fre-
quential modulation frequency, also known as scale in cycles per octave (c/o), 
and corresponding to the variable  in the second layer. With the map-
ping between time-frequency scattering paths  and aver-
age energies in parts per million that are presented herein, there is enough 
information to replicate the auditory percepts of “FAVN,” even in the absence 
of a waveform-domain record of the piece.
	 The numerical tables appearing in these pages epitomize one founding 
myth of computer music: that of a mental quest for “the” sound. At the limit 
of technical feasibility, signal reconstruction is perfect and all phase incoher-
ences have disappeared: the outcome is an exact, Elektronische rendition 
of the original concrète material. In other words, the procedure has gone full 
circle from Elektronische to concrète and back, without alteration. Neverthe-
less, owing to stochastic effects in the sampling of Brownian motion and the 
finiteness of computational resources, the sonified piece can only be a 
close approximate of its textual-numerical prototype. In the to-and-fro of cog-
nitive modeling and acoustic adjustment, the music of signals and the music 
of symbols chase each other like a cadenced farandole. Quite paradoxically, 
the impact of mathematical quantization gradually becomes less notice-
able as it becomes more accurate.
	 Here I do not mean to say, in what would be a paraphrase of Leibniz, that 
“music is a hidden arithmetic exercise of the soul, which does not know that it is 
counting.” I do not, either, mean that the numeric tables that are printed 
herein could aspire to be a proxy for the auditory experience: on the contrary, 
I firmly believe that music is meant to be heard, and that no other medium 
can replace it, or even refer to it in any formal “word-object” correspondence 
system. Thirdly, I do not think of music as a language in the same sense as 

7	 www.github.com/lostanlen/scattering.m
8	 Joakim Andén, Vincent Lostanlen, and Stéphane Mallat, 

“Joint Time-Frequency Scattering for Audio Classification,” 
IEEE Conference Machine Learning for Signal Processing 
(MLSP) (September 2015).

Aside from this technical distinction, audio texture synthesis from scattering 
coefficients is quite comparable to the training of a deep neural network. 
In both cases, the system produces uninformative outcomes at the start; and 
then, after being exposed to some real-world data, adjusts its own predic-
tions by trial and error, until converging to a highly articulate statistical fit.
	 For Joakim Andén and myself, refactoring the source code of the soft-
ware library for scattering transforms so that it could allow for multivariable 
architectures and gradient backpropagation, was a steady effort of almost 
two years, with many emotional ups and downs—as is often the case in scien-
tific research. By the end of 2015, we had a working implementation 7 and 
presented it at the IEEE conference on Machine Learning for Signal Process-
ing (MLSP) in Boston.8 Our paper boiled down to three claims: first, time-fre-
quency scattering is more mathematically interpretable than other auditory 
representations, whether engineered or learned; secondly, on some tasks 
for which the availability of annotated data is limited (e.g. musical instrument 
recognition), it actually outperforms deep learning classifiers; and thirdly, it 
allows for the reconstruction of chirps in audio textures, such as bird vocaliza-
tions, with satisfying perceptual similarity to the target. Yet, the section on 
signal re-synthesis was purely meant as an illustration of the capabilities and 
limitations of time-frequency scattering, as compared to other auditory rep-
resentations. Never in the research agenda of my PhD did I anticipate that 
time-frequency scattering could one day prove to be useful to contempo-
rary music creation.

Florian Hecker wrote to me for the first time in the spring of 2016. He had heard 
of time-frequency scattering through our mutual colleague Bob Sturm, As-
sociate Professor of Computer Science at KTH Royal Institute of Technology, 
Stockholm, and wanted to use it as a software for texture-related sound syn-
thesis with wavelet features. When we first ran time-frequency scattering on his 
piece Modulator (2014), I was pleased to find that it performed quite well in 
terms of perceptual similarity, while converging over fifty times faster. Indeed, 
contrary to other STRF-inspired software, the time-frequency scattering 
library was using a multiresolution pyramid to spare unnecessary computations 
in the lower frequencies; moreover, the wavelet factorization in Equation 
[3] allowed for the vectorization of array operations and rely on fast Fourier 
transforms (FFT) to speed up convolutions. These technical improvements 
(although leaving the gist of the algorithm essentially unchanged) noticeably 
streamlined the compositional workflow by allowing rapid prototyping of 
ideas. Because running one iteration of stochastic gradient descent now 
lasted about as long as the target sound clip, it became possible to listen to 
synthetic texture samples in real time, meanwhile time-frequency scattering 
was progressively converging towards a local optimum of Equation [4].
	 I opened this essay by depicting a schematic—and perhaps outdated—
dichotomy between musique concrète and Elektronische Musik. I argued 
that both of these paradigms were following the same artistic research pro-
gram—that is, to liberate the Western canon from a thousand-year-old tra-
dition of solmization that gives hegemonic power to the concept of a musical 
note—yet by clashing ways. What musique concrète gained in terms of tim-
bral sophistication, it lacked in terms of stylistic power. Conversely, Elektronische 
Musik achieved a maximal level of creative control, yet was restricted by a 
rudimentary collection of building blocks: pure tones. This dilemma, as compos-
er Jean-Claude Risset often said, was a direct consequence of the use of an-
alog audio technologies.
	 Now in the age of digital information, the trade-off between specificity 
and expressivity seems to have progressively softened, if not become obso-
lete altogether. In a piece such as Florian Hecker’s “FAVN” (2016), both tradi-
tions are kept alive in a perpetual jeu de miroirs which dynamically alternates 
between the concrète paradigm (i.e. to compute time-frequency scattering 
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our other forms of communication, whether spoken, written, or via signs and 
therefore certainly not of this publication as an ersatz of post-serialist 
musical score. Rather, and despite the utter ineffability of music, it is possible 
to shed light upon our shared faculty of recursion, supplemented by percep-
tual quantization and tabular organization; of which musical notation is a mere 
by-product.
	 Far from any neo-numerological considerations, what is, in my mind, the 
intimate raison d’être of this publication, is that it helps us listeners under-
stand two compositional prospects, and wraps them into one: the will to expand 
the scope of the potentially audible, by seeking for more and more com-
plexity in the parametrization of sound synthesis; and the desire to delve 
deeper into what has been heard, by shifting the auditory focus onto previ-
ously unnoticed details. Music is, therefore, a two-fold ritual of anticipation. Like 
the composer, it is in the liminality of finite speeds that the faun shall dwell 
and thrive.

FAVN – Scattering to Text
Movement I


