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Abstract 
The recent surge of machine learning models for wireless sensor networks brings new opportunities for 
environmental acoustics. Yet, these models are prone to statistical deviations, e.g., due to unforeseen changes 
in recording hardware or atmospheric conditions. In a supervised learning context, mitigating such deviations 
is all the more difficult that the area of coverage is vast. I propose to mitigate this problem by applying a 
form of adaptive gain control in the time-frequency domain, known as Per-Channel Energy Normalization 
(PCEN). While PCEN has recently been introduced for keyword spotting in the smart home, i show that it is 
also beneficial for outdoor sensing applications. Specifically, i discuss the deployment of PCEN for 
terrestrial bio-acoustics, marine bio-acoustics, and urban acoustics. Finally, i formulate three unsolved 
problems regarding PCEN, approached from the different perspectives of signal processing, real-time 
systems, and deep learning. 

Keywords: acoustic signal detection, bioacoustics, far-field acoustics. 

1 Introduction 

The human ear exhibits a remarkable ability to decode acoustic events from a distant source. For example, a 
recent study has evaluated the intelligibility of shouted speech in a forest environment, and reported a 
classification accuracy of 75% for 17 French words at a distance of 90 meters [1]. What makes far-field 
recognition a challenging task is not solely that acoustic waves gradually decay in intensity as they spread 
away from the source, but also that they undergo absorption and reverberation depending on the propagation 
medium. These effects tend to alter the shape of the acoustic event of interest in terms of temporal envelope 
as well as spectral envelope. Moreover, the absorption spectrum of air is itself altered by meteorological 
variables such as temperature, pressure, and humidity [2]. Hence, in the context of acoustic sensor networks, 
guaranteeing the robustness of machine learning systems against missed or erroneous detections calls for 
distributed signal processing techniques which take these factors of variability into account. 
 
Auditory neurophysiology provides useful domain-specific knowledge about the problem of far-field 
acoustic event detection, which can potentially be transferred to the domain of acoustical engineering. 
Whereas the recognition of speech involves high-level cognitive processes related to linguistic competence, 
meaningless stimuli such as dynamic ripples as less prone to individual learning effects; in this way, they 
shed light on the early stages of our auditory system [3]. At the level of the cochlea, two functional elements 
explaining the ability of human listeners to identify distant sounds are: 

1. the band-pass selectivity of inner hair cell stereocilia, known as tonotopy [4]; and 
2. the loudness adaptation of outer hair cells, known as electromotility [5].  



 

 
 2 

 
Although tonotopy routinely appears in machine listening pipelines under the form of time–frequency 
decompositions, electromotility does not have such a well-established computational equivalent. For 
example, most applications of deep convolutional networks (convnets) in the time–frequency domain operate 
on the pointwise logarithm of the mel-frequency spectrogram or constant-Q wavelet scalogram, without any 
form of instance normalization. Note that batch normalization, a widespread technique in deep learning, does 
not qualify as an imitation of electromotility because its parameters are shared across recording conditions in 
the training set and are kept constant in the test set [6]. 
 
The situation changed in 2017 with the introduction of a nonlinear operator for post-processing 
spectrograms: per-channel energy normalization (PCEN) [7]. The key idea behind PCEN is to divide each 
“channel” (i.e., frequency band) in the mel-frequency spectrogram by a recursive estimate of the its expected 
value, under an assumption of local weak-sense stationarity. Contrary to batch normalization, the role of 
PCEN in the time–frequency domain may be compared to the role of acetylcholine as a regulator of 
electromotility in the cochlea [8]. PCEN has shown to outperform the pointwise logarithm on a task of far-
field keyword spotting in the smart home and is now a component of the state-of-the-art deep learning model 
for automatic speech recognition: LEAF, which stands for Learnable Audio Frontend [9]. 
 
In this article, i demonstrate that the application scope of PCEN goes well beyond its original purpose of 
recognizing spoken queries (e.g., “OK Google”) in a domestic environment. I review the usage of PCEN in 
recent publications from the scientific literature and outline the diversity of noise profiles against which 
PCEN is purposed: traffic noise in urban acoustics, insect noise in terrestrial bio-acoustics, vessel noise in 
marine bio-acoustics, and so forth. My point of view is that PCEN acts like a self-calibration mechanism for 
acoustic sensors: not only does it improve their area of coverage, it also reduces their dependency to spurious 
factors of variability; e.g., distance between sensor and source and weather conditions. 
 
Section 2 illustrates the nonstationarity and nonuniformity of background noise in a sensor network named 
BirdVox as a motivating example for resorting to PCEN. Section 3 recalls the definition of PCEN and its 
known mathematical properties so far. Section 4 discusses the role of PCEN in some recent publications on 
outdoor acoustic sensor networks. Lastly, Section 5 formulates three unsolved problems with PCEN. 
 

2 Motivating example 

The BirdVox project1 operates a network of nine acoustic sensors near Ithaca, NY, US, with the goal of 
monitoring the migration of three families of birds: thrushes (Turdidae), warblers (Parulidae), and sparrows 
(Passerellidae). While aloft, these birds produce short vocalizations, known as flight calls, which carry a sort 
of “acoustic signature” of the species. Thus, the guiding idea behind BirdVox is to develop a supervised 
machine listening system for the automatic detection and classification of flight calls [10]. 
 
However, a major difficulty of this approach resides in the fact that supervised learning assumes the training 
set and the test set to be identically distributed. Yet, we observe that the mel–frequency spectra of the 
acoustic scene surrounding BirdVox sensors follows different empirical distributions depending on the 
geographical location of the sensor and the hour of day. Because human annotation for flight calls is 
particularly costly and time-consuming, collecting a training set which covers all recording conditions is not 
feasible in practice. Therefore, the role of PCEN will be to automatically calibrate all mel-frequency spectra 
to an identical distribution, so as to allow statistical generalization from training set to test set.  

 
1 For more information on the BirdVox project, visit: https://wp.nyu.edu/birdvox 
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Figure 1 – An illustration of the nonstationarity of background noise in acoustic sensor networks. Each plot 
shows the distribution of short-term power spectral density for the same recording session, at various local 
times: 6:30 p.m. (top), 11 p.m. (middle), and 4:30 a.m. (bottom). The blue curve denotes the median value 

over a period of 30 minutes, while the shaded areas denote interdecile and intercentile ranges over the same 
period. The three bird drawings show the typical vocal ranges of three families of birds: thrushes (Turdidae), 

warblers (Parulidae), and sparrows (Passerellidae). 
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Figure 1 illustrates the nonstationarity of background noise in the BirdVox sensor network; i.e., its 
dependency upon hour of day at a specific location. We find that different sources of noise interfere with the 
vocal ranges of the species of interest. Before dusk (6:30 p.m. local time), the stridulation of insects covers 
two narrow bands which are roughly one octave apart: i.e., at 2-2.5 kHz and 4-5 kHz respectively. At night 
(11 p.m.), the sound pressure level of background noise has reduced globally but leaves a passband around 4 
kHz. Lastly, shortly before dawn (4:30 a.m.), we notice the presence of anthropogenic noise in the 2-4 kHz 
band: in this case, a passing train. 
 
Conversely, Figure 2 illustrates the nonuniformity of background noise in the BirdVox sensor network; i.e., 
its dependency upon location at a specific hour of day. We observe that the power spectral density is 
approximately flat near Cayuga Lake (North of Ithaca) but presents evidence of traffic noise on the New 
York state route 34 (South of Ithaca) and evidence of biophonic noise near the Shindagin Hollow State 
Forest (South-East of Ithaca). These observations indicate that, even at the small scale of 1000 km2 or so, 
machine listening in bioacoustics sensor networks faces the challenge of adapting to previously unseen 
recording conditions. 
 
 

 

Figure 2 – An illustration of the nonuniformity of background noise in acoustic sensor networks. Each plot 
shows the distribution of short-term power spectral density for the same recording session at six different 
locations in Tompkins County, NY, US. The position of each line plot on the map represents its sensing 

location. Axis labels and legend are the same as in Figure 2. 
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3 Method 

This section recalls the definition of PCEN and explains how it improves the robustness of spectrogram-
based acoustic event detectors to spatiotemporal variations of background noise. 
 

3.1 Definition 

Let 𝑬(𝑡, 𝑓) be the time–frequency representation of a monophonic audio signal. In full generality, the 
variable 𝑓 may correspond to frequency in Hertz, as in the complex modulus of a short-term Fourier 
transform; to frequency in mels, as in a mel–frequency spectrogram; or to frequency in musical semitones, as 
in a constant-Q scalogram. The first operation in PCEN consists in applying a low-pass filter 𝝓!(𝑡) of decay 
constant equal to T, thus yielding a smoothed time–frequency representation 𝐌(𝑡, 𝑓), defined as 
 

𝐌(𝑡, 𝑓) = *𝐄 ∗ 𝝓𝑇+(𝑡, 𝑓), (1) 
 
where the asterisk symbol ∗ denotes a convolution product and is implicitly broadcasted over different 
frequency “channels” 𝑓. The original publication on PCEN [7] proposes to define 𝝓!(𝑡) implicitly as an 
infinite impulse response (IIR) filter via a first-order autoregressive model of the form: 
 

𝐌(𝑡, 𝑓) = 𝑠𝐄(𝑡, 𝑓)+ (1 − s)𝐌(𝑡 − 1, 𝑓). (2) 
 
A previous publication [11] gives the formula linking the rate parameter 𝑠 and the time scale parameter T. 
The next step in PCEN consists in the renormalization per se and involves various pointwise nonlinearities, 
yielding the PCEN-transformed spectrogram (or PCEN-gram for short): 
 

𝐏𝐂𝐄𝐍(𝑡, 𝑓) = "#$
𝑬(𝑡,𝑓)

'($)𝑬∗𝝓𝑇*(𝑡,𝑓)+
!,

"

-#". (3) 

 
The parameters 𝜀, 𝛼, 𝛿, and 𝑟 are application-specific and should be adjusted to the task at hand. The librosa 
implementation2 defaults to the parameters of [7] and refers to [11] for practical recommendations on how to 
seek a good parameter setting manually. Another option is to define PCEN as a differentiable layer in a deep 
learning library such as PyTorch of TensorFlow, so that these parameters become trainable via gradient 
descent3. Furthermore, this approach allows all five parameters	𝑇, 𝜀, 𝛼, 𝛿, and 𝑟 to be frequency-specific. 
 

3.2 Properties 

Intuitively, PCEN hinges on the fact that 𝐌(𝑡, 𝑓) grows in proportion to 𝐄(𝑡, 𝑓) if the frequency band 𝑓 has 
stationary magnitudes at the time scale T, thus making the ratio 𝐄(𝑡, 𝑓)/𝐌(𝑡, 𝑓) of the order of one 
independent of noise level. Conversely, if the time–frequency region (𝑡, 𝑓) coincides with the onset of an 
acoustic event, then we will have 𝐄(𝑡, 𝑓) ≫ 𝐌(𝑡, 𝑓) and thus 𝐏𝐂𝐄𝐍(𝑡, 𝑓) ≫ 1. Therefore, PCEN aims at 
canceling the amplitude fluctuations caused by background noise while preserving (and even enhancing) the 
local contrast near foreground onsets and offsets. 
 
While the invention of PCEN in 2017 was driven by experimentation in speech processing and prior 
knowledge on computational auditory models, newer publications have supported its usefulness in machine 
learning for environmental acoustics. In particular, [11] has observed that PCEN converts noise from 

 
2 Official website of the librosa package for audio signal processing in Python: https://librosa.org/ 
3 For a PyTorch implementation of PCEN, visit: https://github.com/daemon/pytorch-pcen 
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acoustic sensor networks into additive, white, quasi-Gaussian noise. Moreover, [11] has proven guarantees of 
numerical stability of PCEN with respect to the equalization of 𝐄(𝑡, 𝑓), thus suggesting that variations in the 
absorption spectrum of air due to atmospheric conditions has almost no effect on the PCEN-gram. 
 

4 Application scope 

This section explains how the aforementioned definition and properties of PCEN can serve multiple 
application contexts, among which: terrestrial bioacoustics, marine bioacoustics, and urban acoustics. 
 

4.1 Terrestrial bioacoustics 

Going back to the problem statement of BirdVox (see Section 2), the replacement of a log-mel-spectrogram 
frontend by a PCEN frontend has significantly improved the ability of convnets to generalize to previously 
unseen recording conditions, such as held-out sensor locations or dawn vs. dusk. On a task of flight call 
detection (BirdVox-full-night dataset), [12] has reported reductions in miss rate between 15% to 110% 
depending on sensor locations. Note that, for this matter, the parameters of PCEN had to be adjusted between 
the original indoor application [7] and the outdoor application of BirdVox. Another example of publication 
which relies on deep learning with PCEN for terrestrial bio-acoustics is [13], which proposes to classify 
flight calls in terms of species, family, and genus. 
 
Interestingly, PCEN is not solely beneficial as a pre-processing stage for machine learning in the time-
frequency domain: it can also serve as the basis of feature engineering. A recent study on human vocal 
imitations of birdsong [14] has defined the following novelty curve for vocal activity detection: 
  

𝐀𝐜𝐭𝐢𝐯𝐢𝐭𝐲(𝑡) = log	 =
max. 𝐏𝐂𝐄𝐍(𝑡, 𝑓) − min.𝐏𝐂𝐄𝐍(𝑡, 𝑓)

median/#*max.# 𝐏𝐂𝐄𝐍(𝑡0, 𝑓0) − min.#𝐏𝐂𝐄𝐍(𝑡0, 𝑓0)+
F , (4) 

 
and managed to accurately segment both bird songs and their whistled imitations into syllabic units4. 
 

4.2 Marine bioacoustics 

To the best of my knowledge, the only application of PCEN to marine bioacoustics to date is [15], which 
proposes to detect vocalizations from North Atlantic Right Wales (Eubalaena glacialis). To this end, the 
paper proposes an analogy between PCEN and spectral flux at the limit case: 𝜀 → 0, 𝛼 → 1, 𝑟 → 0. Denoting 
by 𝐏𝐂𝐄𝐍𝟎(𝑡, 𝑓) this limit case, one obtains a simple PCEN-based definition of perceptual acoustic flux: 
 

𝐅𝐥𝐮𝐱(𝑡) = max
.
	𝐏𝐂𝐄𝐍𝟎(𝑡, 𝑓) = log =1 +max

.

𝐄(𝑡, 𝑓)
𝑠 ∑ 𝐄(t − τ − 1, 𝑓)$2

345
F . (5) 

 
The definition above is more robust to underwater noise than traditional, logarithm-based spectral flux. 
Indeed, the performance metric (MTBFA@50) of PCEN-based 𝐅𝐥𝐮𝐱(𝑡) for whale calls as a distance of 8 km 
is the same as the performance of the baseline for near-field sounds below 100 meters. Of course, training a 
convnet on log-mel-spectrogram features would outperform a simple hand-crafted feature such as spectral 
flux; but the take-home message of this paper is that, even in the absence of any feature learning, PCEN 
extends the detection radius of bioacoustics sensor networks, all other things being equal. 

 
4Link to Python source code for PCEN-based vocal activity detection:  https://github.com/BirdVox/oudyk_vihar2019 
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4.3 Urban acoustics 

A growing number of publications apply PCEN to solve machine learning problems in urban acoustics. The 
earliest one is [16], which trained a convnet in the waveform domain to detect and classify sounds in the 
URBAN-SED dataset. The originality of this work is that it proposes to learn the time-domain parameters of 
the filterbank alongside those of PCEN (see Equation 3). In this sense, [16] is a forerunner of LEAF. 
In [17], the authors present a new pretext task for self-supervised learning in urban acoustic sensor networks, 
named TriCycle. On the SONYC-UST dataset [18], combining PCEN with TriCycle achieved state-of-the-
art results. Interestingly, PCEN improved accuracy both on the pretext task and the downstream task while 
reducing the sensitivity to sensor location—an observation in accordance with [12] (see Section 4.1). 
  
In [19], the authors propose to apply PCEN as part of an outdoor keyword spotting system. The motivation 
behind this work resides in prototyping an accessible interface for urban crosswalks so that visually impaired 
pedestrians can interact by voice with the automatic signalization and cross the street safely.  
 
In [20], the authors present a convnet for vehicle engine noise classification. This convnet takes as input a 
tensor named “Mod-PCEN” with three dimensions: time, frequency, and amplitude modulation rate. The 
third dimension corresponds to the frequency dimension of a short-term Fourier transform (STFT) which is 
performed over each frequency bin in the PCEN-gram.  
 
A limitation of PCEN, in its original definition, is that the time scale parameter T remains fixed. To address 
this limitation, a recent publication [21] has proposed to extend the definition of PCEN to a multiscale 
setting. The key idea consists in varying T according to a geometric progression and stacking all PCEN-
grams corresponding to each value of T. The resulting three-way tensor may serve as input to the first layer 
of a convnet. Intuitively, each slice of the tensor represents a different time scale of stationarity. On a task of 
urban sound classification, the authors have observed the multiscale PCEN outperforms single-scale PCEN 
across all choices of T. They have also noted that multiscale PCEN is more robust than single-scale PCEN to 
random fluctuations in the reverberation time of the acoustic scene at hand. 
 

5 Future perspectives 

This section describes three research directions which, in my opinion, have the potential to improve the 
theoretical understanding and practical usability of PCEN in the near future. 

5.1 Probabilistic analysis 

Empirical studies [11, 12] have suggested that the self-calibration role of PCEN can be attributed to two 
separate effects: the decorrelation of subband magnitudes on one hand; and their quasi-Gaussianization on 
the other hand. As of today, the former effect has received a theoretical justification: [11, Prop III.3] has 
proven that the PCEN of a stationary source-filter model 𝒙(𝑡) = 𝒂(𝑡) × (𝒆 ∗ 𝒉)(𝑡) is stable to deformations 
of \𝒉]\(𝜔); i.e., the spectrum of the filter 𝒉(𝑡). However, the latter of these two effects (namely, quasi-
Gaussianization) remains poorly understood as of today. Formally speaking, i ask under what conditions the 
PCEN of some random stationary process 𝑿 approximates a multivariate Gaussian i.i.d. process. This 
question has practical importance because draws a conceptual link with unsupervised machine learning, 
perhaps in the spirit of variational inference with inverse autoregressive normalizing flows [22].  
 
In this regard, a potential first step could be to assume that 𝑿 is an instance of Gaussian stationary noise. 
Under some technical restrictions on the choice of time–frequency representation, its power spectrogram 
𝑬𝑿(𝑡, 𝑓) follows a 𝜒7 (“chi-squared”) distribution with two degrees of freedom [23]. Then, one could 
approximate the denominator of Equation (3), *𝜀 + (𝑬𝑿 ∗ 𝝓!)(𝑡, 𝑓)+

8, by a 𝜒7 distribution with 𝑘 ≫ 2 
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degrees of freedom; and ultimately 𝐏𝐂𝐄𝐍𝑿 by the power transform of a Fisher-Snedecor distribution. 
Despite these initial ideas, numerical bounds for the Gaussian approximation of PCEN remain to be found 
and a discussion of the general (nonstationary) case is lacking. We leave them as open research questions. 
  

5.2 Embedded implementations 

The past few years have witnessed a surge of edge computing in low-cost acoustic sensor networks. Two 
examples are SONYC [18], which extracts self-supervised convnet features; and CENSE [24], which 
extracts third-octave spectrograms. Machine listening “on the edge”, as opposed to “in the cloud”, brings 
new opportunities in terms of privacy by design, of fault tolerance, and of lightweight connectivity. Thus, 
given that PCEN is by essence a distributed algorithm, it makes sense to incorporate it within the toolkit of 
embedded routines for audio signal processing on low-cost sensors.  
 
Although PCEN was invented by researchers at Google [7] and integrated by researchers at Baidu as part of 
a study on “production speech models”5, the product departments of these companies haven’t openly 
communicated about it. Thus, it is unclear whether PCEN is actually being deployed on the client side of the 
Google Assistant, and likewise for the Baidu DuerOS conversational platform. 
 
At the same time, there is a promising avenue of research in the field of solid-state electronics to implement 
PCEN into the new generation of keyword spotting hardware. In particular, [26] has prototyped a CMOS 
chip, named “normalized acoustic feature extractor” (NAFE), which comprises a mixed-signal (analog and 
digital) approximation of PCEN via an integrate-and-fire scheme. In combination with a spiking neural 
network (SNN), this chip achieves state-of-the-art results in keyword spotting, even in the presence of real-
world sources of noise (traffic, restaurant, and so forth), while consuming less than 1 μW in total. 
 
Future work should investigate whether PCEN can be made compatible with emerging technologies in 
machine listening, such as solar-powered batteryless sensors with wireless IoT connectivity [27]. 
 

5.3 Beyond short-term calibration: towards decentralized nonstationary PCEN 

PCEN is currently defined as a short-term calibration mechanism, operating at the level of spectrogram 
frames. Although this definition has practical advantages, such as a low latency and a small memory 
footprint, PCEN also puts strong constraints on the choice of parameters:	𝑇, 𝜀, 𝛼, 𝛿, and 𝑟. Indeed, these 
parameters are supposed to be kept constant and shared across all sensors. 
 
In future research, one could imagine relaxing these constraints and allowing PCEN parameters to vary not 
only depending on frequency, but depending on the noise profile surrounding the sensor at a given time and 
location. Thus, PCEN parameters would themselves become nonstationary and nonuniform: in turn, they 
would depend on stationary hyperparameters via the prediction of a neural network, which would govern the 
influence of long-term acoustic environment (several hours) upon the calibration of the short-term acoustic 
environment (one second or less). This idea bears a similarity with previous work on context-adaptive neural 
networks [12]. 
 
Making PCEN context-adaptive will introduce a feedback loop in Equation (3), in the sense that the 
prediction of a neural network from the input 𝐏𝐂𝐄𝐍(𝑡, 𝑓) will serve as a regressor for the prediction of the 
parameters 	𝑇, 𝜀, 𝛼, 𝛿, and 𝑟 at the frame 𝑡 + 1. This feedback loop is comparable to a top-down effect in 
auditory neurophysiology (see Section 1).  

 
5 Unpublished manuscript (2017) by Baidu Research: https://arxiv.org/abs/1705.04400 
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6 Conclusion 

PCEN is a simple but effective way of reducing the dependency of spectrograms to unwanted sources of 
variability. In this paper, i have argued that, in the context of acoustic sensor networks, it plays the role of a 
self-calibrating mechanism. Indeed, it can operate “on the edge” in a purely data-driven fashion, without 
communication nor synchronization between sensors. Recent publications in bio-acoustics and urban 
acoustics demonstrate that PCEN has a wide scope of applicability. That being said, our scientific 
understanding of PCEN is still in infancy. I have listed three unsolved problems regarding PCEN, 
approached from different perspectives: signal processing, real-time systems, and deep learning.  
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